Search results

1 – 10 of 53
Article
Publication date: 16 April 2024

Chenchen Weng, Martin J. Liu, Jun Luo and Natalia Yannopoulou

Drawing on the social presence theory, this study aims to explore how supplier–customer social media interactions influence supplier observers’ trust in the customers and what…

Abstract

Purpose

Drawing on the social presence theory, this study aims to explore how supplier–customer social media interactions influence supplier observers’ trust in the customers and what mechanisms contribute to variation in trust experience.

Design/methodology/approach

A total of 36 semi-structured interviews were conducted with Chinese suppliers using WeChat for business-to-business interactions. Data were analyzed in three steps: open coding, axial coding and selective coding.

Findings

Findings reveal that varied trust is based not only on the categories of social presence of interaction – whether social presence is embedded in informative interactions – but also on the perceived selectivity in social presence. Observer suppliers who experience selectivity during social and affective interactions create a perception of hidden information and an unhealthy relationship atmosphere, and report a sense of emotional vulnerability, thus eroding cognitive and affective trust.

Originality/value

The findings contribute new understandings to social presence theory by exploring the social presence of interactions in a supplier–supplier–customer triad and offer valuable insights into business-to-business social media literature by adopting a suppliers’ viewpoint to unpack the mechanisms of how social presence of interaction positively and negatively influences suppliers’ trust and behavioral responses.

Details

Industrial Management & Data Systems, vol. 124 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 23 April 2024

Xiaotong Zhang and Qiu Zhang

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of…

Abstract

Purpose

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of bacterial cellulose (BC) and silver nanoparticles (AgNPs) as a platform for the immobilization of a molecularly imprinted polymer (MIP) film. The main objective was to enhance the electrochemical properties of the sensor and achieve a high level of selectivity and sensitivity toward amsacrine molecules in complex biological samples.

Design/methodology/approach

The composite of BC-AgNPs was synthesized and characterized using FTIR, XRD and SEM techniques. The MIP film was molecularly imprinted to selectively bind amsacrine molecules. Electrochemical characterization, including cyclic voltammetry and electrochemical impedance spectroscopy, was performed to evaluate the modified electrode’s conductivity and electron transfer compared to the bare glassy carbon electrode (GCE). Differential pulse voltammetry was used for quantitative detection of amsacrine in the concentration range of 30–110 µM.

Findings

The developed molecular imprinting electrochemical sensor demonstrated significant improvements in conductivity and electron transfer compared to the bare GCE. The sensor exhibited a linear response to amsacrine concentrations between 30 and 110 µM, with a low limit of detection of 1.51 µM. The electrochemical response of the sensor showed remarkable changes before and after amsacrine binding, indicating the successful imprinting of amsacrine in the MIP film. The sensor displayed excellent selectivity for amsacrine in the presence of interfering substances, and it exhibited good stability and reproducibility.

Originality/value

This study presents a novel molecular imprinting electrochemical sensor design using a composite of BC and AgNPs as a platform for MIP film immobilization. The incorporation of BC-AgNPs improved the sensor’s electrochemical properties, leading to enhanced sensitivity and selectivity for amsacrine detection. The successful imprinting of amsacrine in the MIP film contributes to the sensor's specificity. The sensor's ability to detect amsacrine in a concentration range relevant to anticancer therapy and its excellent performance in complex sample matrices add significant value to the field of electrochemical sensing for pharmaceutical analysis.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 28 March 2024

Hans Voordijk, Seirgei Miller and Faridaddin Vahdatikhaki

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to…

Abstract

Purpose

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to prescriptive systems. Prescriptive or operator guidance systems propose operators actionable compaction strategies and guidance, based on the data collected. It is investigated how these systems mediate the perceptions and actions of operators in road pavement practice.

Design/methodology/approach

A case study is conducted on the specific application of an operator guidance system in a road pavement project. In this case study, comprehensive information is presented regarding the process of converting input in the form of data from cameras and sensors into useful output. The ways in which the operator guidance systems translate data into actionable guidance for operators are analyzed from the technological mediation perspective.

Findings

Operator guidance systems mediate actions of operators physically, cognitively and contextually. These different types of action mediation are related to preconditions for successful implementation and use of these systems. Coercive interventions only succeed if there is widespread agreement among the operators. Persuasive interventions are most effective when collective and individual interests align. Contextual influence relates to designs of the operator guidance systems that determine human-technology interactions when using them.

Originality/value

This is the first study that analyzes the functioning of an operator guidance system using the technological mediation approach. It adds a new perspective on the interaction between this system and its users in road pavement practice.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 2
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 5 January 2024

Divya Shree M. and Srinivasa Rao Inabathini

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics…

Abstract

Purpose

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics on a low-loss Taconic substrate and analyze using the coupled theory of resonators for UWB range covering L, S, C and X bands for radars, global positioning system (GPS) and satellite communication applications.

Design/methodology/approach

The filter is designed with a bent coupled transmission line on the top copper layer. Defected ground structures (DGSs) like complementary split ring resonators (CSRRs), V-shaped resonators, rectangular slots and quad circle slots (positioned inwards and outwards) are etched in the ground layer of the filter. The circular orientation of V-shaped resonators adds compactness when linearly placed. By arranging the quad circle slots outwards and inwards at the corner and core of the ground plane, respectively, two filters (Filters I and II) are designed, fabricated and measured. These two filters feature a quasi-elliptic response with transmission zeros (TZs) on either side of the bandpass response, making it highly selective and reflection poles (RPs), resulting in a low-loss filter response. The transmission line model and coupled line theory are implemented to analyze the proposed filters.

Findings

Two filters by placing the quad circle slots outwards (Filter I) and inwards (Filter II) were designed, fabricated and tested. The fabricated model (Filter I) provides transmission with a maximum insertion loss of 2.65 dB from 1.5 GHz to 9.2 GHz. Four TZs and five RPs are observed in the frequency response. The lower and upper stopband band width (BW) of the measured Filter I are 1.2 GHz and 5.5 GHz of upper stopband BW with rejection level greater than 10 dB, respectively. Filter II (inward quad circle slots) operates from 1.4 GHz to 9.05 GHz with 1.65 dB maximum insertion loss inside the passband with four TZs and four RPs, which, in turn, enhances the filter characteristics in terms of selectivity, flatness and stopband. Moreover, 1 GHz BW of lower and upper stopbands are observed. Thus, the fabricated filters (Filters I and II) are therefore evaluated, and the outcomes show good agreement with the electromagnetic simulation response.

Research limitations/implications

The limitation of this work is the back radiation caused by DGS, which can be eradicated by placing the filter in the cavity and retaining its performance.

Practical implications

The proposed UWB BPFs with novel resonators find their role in the UWB range covering L, S, C and X bands for radars, GPS and satellite communication applications.

Originality/value

To the best of the authors’ knowledge, for the first time, the authors develop a compact UWB BPFs (Filters I and II) with BW greater than 7.5 GHz by combining reformed coupled lines and DGS resonators (CSRRs, V-shaped resonators [modified hairpin resonators], rectangular slots and quad circle slots [inwards and outwards]) for radars, GPS and satellite communication applications.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 March 2024

Sajad Pirsa and Fahime Purghorbani

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…

Abstract

Purpose

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.

Design/methodology/approach

Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.

Findings

Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.

Originality/value

Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 March 2024

Jingqiong Sun, Junren Ming, Xuezhi Wang and Yawen Zhang

This paper aims to examine the impact of the COVID-19 infodemic on the public’s online information behaviour, offering insights critical for shaping effective informational…

Abstract

Purpose

This paper aims to examine the impact of the COVID-19 infodemic on the public’s online information behaviour, offering insights critical for shaping effective informational responses in future public health emergencies.

Design/methodology/approach

This paper uses a structured online survey with 27 targeted questions using a five-point Likert scale to measure eight variables. Data analysis is conducted through structural equation modelling on 307 valid responses to rigorously test the research hypotheses.

Findings

This paper indicates that information quality significantly impacts the public’s capacity to select, share and use online information. Additionally, the comprehensibility of information plays a crucial role in shaping the public’s behaviours in terms of online information exchange and usage. The credibility of information sources emerges as a key determinant influencing the public’s online information selection, exchange and utilization behaviour. Moreover, social influence exerts a substantial effect on the public’s online information selection, acquisition, exchange and utilization behaviour. These findings highlight the presence of universality and sociality, mediation and guidance, as well as the purposefulness and selectivity performed by the public’s online information behaviour during an infodemic.

Originality/value

This paper introduces a novel research model for assessing the influence and identifies the patterns of the public’s online information behaviour during the COVID-19 infodemic. The findings have significant implications for developing strategies to tackle information dissemination challenges in future major public health emergencies.

Details

The Electronic Library , vol. 42 no. 2
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Access

Year

Last 3 months (53)

Content type

Article (53)
1 – 10 of 53