Design and implementation of piezoelectric energy harvesting circuit
Abstract
Purpose
The purpose of this paper is to present the design of a piezoelectric vibration energy generator with a power conditioning circuit to power a wireless sensor node. Frequency and voltage characterization of the piezoelectric energy harvester is performed. A single-stage AC–DC power converter that integrates the rectification and boosting circuit is designed, simulated and implemented in hardware.
Design/methodology/approach
The designed power conditioning circuit incorporates bridgeless boost rectification, a lithium ion battery as an energy storage unit and voltage regulation to extract maximum power from PZT-5H and to attain higher efficiency. The sensor node is modelled in active and sleep states on the basis of the power consumption. Dynamic modelling of the lithium ion battery with its state of charging and discharging is analysed.
Findings
The test result shows that the energy harvester produces a maximum power of 65.9 mW at the resonant frequency of 21.4 Hz. The designed circuit will operate even at a minimum input voltage of 0.5 V. The output from the harvester is rectified, boosted to a 7-V DC output and regulated to 3.3 V to the power C_Mote wireless sensor node. The conversion efficiency of the circuit is improved to 70.03 per cent with a reduced loss of 19.76 mW.
Originality/value
The performance of the energy harvester and the single-stage power conditioning circuit is analysed. Further, the design and implementation of the proposed circuit lead to an improved conversion efficiency of 70.03 per cent with a reduced loss of 19.76 mW. The vibration energy harvester is integrated with a power conditioning circuit to power a wireless sensor node C_Mote. The piezoelectric vibration energy harvester is implemented in real time to power C_Mote.
Keywords
Citation
Savarimuthu, K., Sankararajan, R. and Murugesan, S. (2017), "Design and implementation of piezoelectric energy harvesting circuit", Circuit World, Vol. 43 No. 2, pp. 63-71. https://doi.org/10.1108/CW-12-2016-0065
Publisher
:Emerald Publishing Limited
Copyright © 2017, Emerald Publishing Limited