To read the full version of this content please select one of the options below:

An application of the impedance boundary condition for the design of coils used in domestic induction heating systems

Claudio Carretero (Departamento Ingeniería Electrónica y Comunicaciones, Universidad de Zaragoza, Zaragoza, Spain)
Óscar Lucía (Departamento Ingeniería Electrónica y Comunicaciones, Universidad de Zaragoza, Zaragoza, Spain)
Jesús Acero (Departamento Ingeniería Electrónica y Comunicaciones, Universidad de Zaragoza, Zaragoza, Spain)
Rafael Alonso (Departamento Física Aplicada. Universidad de Zaragoza, Zaragoza, Spain)
José M. Burdío (Departamento Ingeniería Electrónica y Comunicaciones, Universidad de Zaragoza, Zaragoza, Spain)

Abstract

Purpose

The aim of this paper is to propose a design procedure based on the impedance boundary condition in order to simplify the design of inductors for domestic induction heating systems.

Design/methodology/approach

An electromagnetic description of the inductor system is performed to substitute the effects of a component, named system load, for a mathematical condition, the so‐called impedance boundary condition. This is suitable to be used in electromagnetic systems involving high conductive materials at medium frequencies, as it occurs in an induction heating system. Applying this approach, a simplified electrical model arises from the general system.

Findings

A considerable reduction in the efforts devoted to design a coil for induction heating purposes is achieved, because the solution considering the variation of three physical parameters are projected to a one‐dimensional space only depending on a single parameter named corrected penetration depth. This proposal assesses the working conditions of standard induction systems.

Practical implications

This work is performed to achieve a better understanding of the fundamentals involved in the electromagnetic modeling of an induction heating system. The main goal is the definition of a better coil design process because it is probably the most time‐consuming task in the construction of a complete induction system.

Originality/value

In this paper, the so‐called corrected penetration depth is defined. This single parameter allows explaining the influence of the physical parameter of the inductor load and the excitation frequency in the equivalent of the complete inductor system. The numerical results carried out considering the corrected penetration depth instead of the physical load properties have been validated experimentally.

Keywords

Citation

Carretero, C., Lucía, Ó., Acero, J., Alonso, R. and Burdío, J.M. (2011), "An application of the impedance boundary condition for the design of coils used in domestic induction heating systems", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 30 No. 5, pp. 1616-1625. https://doi.org/10.1108/03321641111152775

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited