To read this content please select one of the options below:

Strategy of coupling to model physical phenomena within molten glass bath heated by direct induction

Laetitia Jacoutot (SIMAP – EPM laboratory, ENSEEG, Saint Martin d'Hères, France CEA – Valrhô – Marcoule, SCDV/LDPV, Bagnols sur Cèze, France)
Emilien Sauvage (SIMAP – EPM laboratory, ENSEEG, Saint Martin d'Hères, France CEA – Valrhô – Marcoule, SCDV/LDPV, Bagnols sur Cèze, France)
Annie Gagnoud (SIMAP – EPM laboratory, ENSEEG, Saint Martin d'Hères, France)
Yves Fautrelle (CEA – Valrhô – Marcoule, SCDV/LDPV, Bagnols sur Cèze, France)
Patrice Brun (CEA – Valrhô – Marcoule, SCDV/LDPV, Bagnols sur Cèze, France)
Jacques Lacombe (CEA – Valrhô – Marcoule, SCDV/LDPV, Bagnols sur Cèze, France)

Abstract

Purpose

This paper aims to report on a vitrification process based on direct induction that has been developed by the French Atomic Energy Commission (CEA, France). This process is characterized by currents directly induced inside the molten glass and by the cooling of all the crucible walls. In addition, a mechanical stirring device is used to homogenize the molten glass. This paper presents a global modelling of coupled phenomena that take place within the glass bath.

Design/methodology/approach

Electromagnetic, thermal and hydrodynamic phenomena are modelled. The aim of this study is to develop strategy of coupled modelling between these aspects. The thermohydrodynamic calculations are achieved with the Fluent software (distributed by Fluent France) and the electromagnetic aspects are solved by the OPHELIE program based on integral methods (developed in EPM laboratory).

Findings

Two configurations are considered: the first deals with thermal convection in an unstirred bath and the second takes into account the mechanical stirring.

Research limitations/implications

The main limitation is that repartition of the Joule power density within the molten glass is supposed to be not perturbed by the intrusive elements like the thermocouples or the stirrer. This assumption allows us to perform only axisymmetric calculations of induction effect.

Originality/value

This paper present different strategy of coupling the thermohydrodynamic and direct induction phenomena taken place in the molten glass.

Keywords

Citation

Jacoutot, L., Sauvage, E., Gagnoud, A., Fautrelle, Y., Brun, P. and Lacombe, J. (2008), "Strategy of coupling to model physical phenomena within molten glass bath heated by direct induction", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 27 No. 2, pp. 369-376. https://doi.org/10.1108/03321640810847652

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Related articles