Search results

1 – 10 of 18
Article
Publication date: 26 May 2022

Ismail Abiodun Sulaimon, Hafiz Alaka, Razak Olu-Ajayi, Mubashir Ahmad, Saheed Ajayi and Abdul Hye

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully…

270

Abstract

Purpose

Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully investigated. This paper aims to investigate the effects traffic data set have on the performance of machine learning (ML) predictive models in AQ prediction.

Design/methodology/approach

To achieve this, the authors have set up an experiment with the control data set having only the AQ data set and meteorological (Met) data set, while the experimental data set is made up of the AQ data set, Met data set and traffic data set. Several ML models (such as extra trees regressor, eXtreme gradient boosting regressor, random forest regressor, K-neighbors regressor and two others) were trained, tested and compared on these individual combinations of data sets to predict the volume of PM2.5, PM10, NO2 and O3 in the atmosphere at various times of the day.

Findings

The result obtained showed that various ML algorithms react differently to the traffic data set despite generally contributing to the performance improvement of all the ML algorithms considered in this study by at least 20% and an error reduction of at least 18.97%.

Research limitations/implications

This research is limited in terms of the study area, and the result cannot be generalized outside of the UK as some of the inherent conditions may not be similar elsewhere. Additionally, only the ML algorithms commonly used in literature are considered in this research, therefore, leaving out a few other ML algorithms.

Practical implications

This study reinforces the belief that the traffic data set has a significant effect on improving the performance of air pollution ML prediction models. Hence, there is an indication that ML algorithms behave differently when trained with a form of traffic data set in the development of an AQ prediction model. This implies that developers and researchers in AQ prediction need to identify the ML algorithms that behave in their best interest before implementation.

Originality/value

The result of this study will enable researchers to focus more on algorithms of benefit when using traffic data sets in AQ prediction.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 May 2024

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis and Mohsin Iqbal

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental…

Abstract

Purpose

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental testing and finite element analysis (FEA) are utilized to estimate the SCF efficiently. The mathematical equations provide the SCF at the crown and saddle of tubular T-joints for various load scenarios. Offshore structures are subjected to a wide range of stresses from all directions, and the hotspot stress might occur anywhere along the brace. It is critical to incorporate stress distribution since using the single-point SCF equation can lead to inaccurate hotspot stress and fatigue life estimates. As far as we know, there are no equations available to determine the SCF around the axis of the brace.

Design/methodology/approach

A mathematical model based on the training weights and biases of artificial neural networks (ANNs) is presented to predict SCF. 625 FEA simulations were conducted to obtain SCF data to train the ANN.

Findings

Using real data, this ANN was used to create mathematical formulas for determining the SCF. The equations can calculate the SCF with a percentage error of less than 6%.

Practical implications

Engineers in practice can use the equations to compute the hotspot stress precisely and rapidly, thereby minimizing risks linked to fatigue failure of offshore structures and assuring their longevity and reliability. Our research contributes to enhancing the safety and reliability of offshore structures by facilitating more precise assessments of stress distribution.

Originality/value

Precisely determining the SCF for the fatigue life of offshore structures reduces the potential hazards associated with fatigue failure, thereby guaranteeing their longevity and reliability. The present study offers a systematic approach for using FEA and ANN to calculate the stress distribution along the weld toe and the SCF in T-joints since ANNs are better at approximating complex phenomena than standard data fitting techniques. Once a database of parametric equations is available, it can be used to rapidly approximate the SCF, unlike experimentation, which is costly and FEA, which is time consuming.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 26 April 2024

Luís Jacques de Sousa, João Poças Martins and Luís Sanhudo

Factors like bid price, submission time, and number of bidders influence the procurement process in public projects. These factors and the award criteria may impact the project’s…

Abstract

Purpose

Factors like bid price, submission time, and number of bidders influence the procurement process in public projects. These factors and the award criteria may impact the project’s financial compliance. Predicting budget compliance in construction projects has been traditionally challenging, but Machine Learning (ML) techniques have revolutionised estimations.

Design/methodology/approach

In this study, Portuguese Public Procurement Data (PPPData) was utilised as the model’s input. Notably, this dataset exhibited a substantial imbalance in the target feature. To address this issue, the study evaluated three distinct data balancing techniques: oversampling, undersampling, and the SMOTE method. Next, a comprehensive feature selection process was conducted, leading to the testing of five different algorithms for forecasting budget compliance. Finally, a secondary test was conducted, refining the features to include only those elements that procurement technicians can modify while also considering the two most accurate predictors identified in the previous test.

Findings

The findings indicate that employing the SMOTE method on the scraped data can achieve a balanced dataset. Furthermore, the results demonstrate that the Adam ANN algorithm outperformed others, boasting a precision rate of 68.1%.

Practical implications

The model can aid procurement technicians during the tendering phase by using historical data and analogous projects to predict performance.

Social implications

Although the study reveals that ML algorithms cannot accurately predict budget compliance using procurement data, they can still provide project owners with insights into the most suitable criteria, aiding decision-making. Further research should assess the model’s impact and capacity within the procurement workflow.

Originality/value

Previous research predominantly focused on forecasting budgets by leveraging data from the private construction execution phase. While some investigations incorporated procurement data, this study distinguishes itself by using an imbalanced dataset and anticipating compliance rather than predicting budgetary figures. The model predicts budget compliance by analysing qualitative and quantitative characteristics of public project contracts. The research paper explores various model architectures and data treatment techniques to develop a model to assist the Client in tender definition.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 March 2024

Feng Zhang, Youliang Wei and Tao Feng

GraphQL is a new Open API specification that allows clients to send queries and obtain data flexibly according to their needs. However, a high-complexity GraphQL query may lead to…

Abstract

Purpose

GraphQL is a new Open API specification that allows clients to send queries and obtain data flexibly according to their needs. However, a high-complexity GraphQL query may lead to an excessive data volume of the query result, which causes problems such as resource overload of the API server. Therefore, this paper aims to address this issue by predicting the response data volume of a GraphQL query statement.

Design/methodology/approach

This paper proposes a GraphQL response data volume prediction approach based on Code2Vec and AutoML. First, a GraphQL query statement is transformed into a path collection of an abstract syntax tree based on the idea of Code2Vec, and then the query is aggregated into a vector with the fixed length. Finally, the response result data volume is predicted by a fully connected neural network. To further improve the prediction accuracy, the prediction results of embedded features are combined with the field features and summary features of the query statement to predict the final response data volume by the AutoML model.

Findings

Experiments on two public GraphQL API data sets, GitHub and Yelp, show that the accuracy of the proposed approach is 15.85% and 50.31% higher than existing GraphQL response volume prediction approaches based on machine learning techniques, respectively.

Originality/value

This paper proposes an approach that combines Code2Vec and AutoML for GraphQL query response data volume prediction with higher accuracy.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 6 March 2023

Lu An, Yan Shen, Gang Li and Chuanming Yu

Multiple topics often exist on social media platforms that compete for users' attention. To explore how users’ attention transfers in the context of multitopic competition can…

Abstract

Purpose

Multiple topics often exist on social media platforms that compete for users' attention. To explore how users’ attention transfers in the context of multitopic competition can help us understand the development pattern of the public attention.

Design/methodology/approach

This study proposes the prediction model for the attention transfer behavior of social media users in the context of multitopic competition and reveals the important influencing factors of users' attention transfer. Microblogging features are selected from the dimensions of users, time, topics and competitiveness. The microblogging posts on eight topic categories from Sina Weibo, the most popular microblogging platform in China, are used for empirical analysis. A novel indicator named transfer tendency of a feature value is proposed to identify the important factors for attention transfer.

Findings

The accuracy of the prediction model based on Light GBM reaches 91%. It is found that user features are the most important for the attention transfer of microblogging users among all the features. The conditions of attention transfer in all aspects are also revealed.

Originality/value

The findings can help governments and enterprises understand the competition mechanism among multiple topics and improve their ability to cope with public opinions in the complex environment.

Details

Aslib Journal of Information Management, vol. 76 no. 3
Type: Research Article
ISSN: 2050-3806

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1133

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 January 2024

Zoltán Pápai, Péter Nagy and Aliz McLean

This study aims to estimate the quality-adjusted changes in residential mobile consumer prices by controlling for the changes in the relevant service characteristics and quality…

Abstract

Purpose

This study aims to estimate the quality-adjusted changes in residential mobile consumer prices by controlling for the changes in the relevant service characteristics and quality, in a case study on Hungary between 2015 and 2021; compare the results with changes measured by the traditionally calculated official telecommunications price index of the Statistical Office; and discuss separating the hedonic price changes from the effect of a specific government intervention that occurred in Hungary, namely, the significant reduction in the value added tax rate (VAT) levied on internet services.

Design/methodology/approach

Since the price of commercial mobile offers does not directly reflect the continuous improvements in service characteristics and functionalities over time, the price changes need to be adjusted for changes in quality. The authors use hedonic regression analysis to address this issue.

Findings

The results show significant hedonic price changes over the observed seven-year period of over 30%, which turns out to be primarily driven by the significant developments in the comprising service characteristics and not the VAT policy change.

Originality/value

This paper contributes to the literature on hedonic price analyses on complex telecommunications service plans and enhances this methodology by using weights and analysing the content-related features of the mobile packages.

Details

Digital Policy, Regulation and Governance, vol. 26 no. 3
Type: Research Article
ISSN: 2398-5038

Keywords

Open Access
Article
Publication date: 23 January 2024

Luís Jacques de Sousa, João Poças Martins, Luís Sanhudo and João Santos Baptista

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase…

Abstract

Purpose

This study aims to review recent advances towards the implementation of ANN and NLP applications during the budgeting phase of the construction process. During this phase, construction companies must assess the scope of each task and map the client’s expectations to an internal database of tasks, resources and costs. Quantity surveyors carry out this assessment manually with little to no computer aid, within very austere time constraints, even though these results determine the company’s bid quality and are contractually binding.

Design/methodology/approach

This paper seeks to compile applications of machine learning (ML) and natural language processing in the architectural engineering and construction sector to find which methodologies can assist this assessment. The paper carries out a systematic literature review, following the preferred reporting items for systematic reviews and meta-analyses guidelines, to survey the main scientific contributions within the topic of text classification (TC) for budgeting in construction.

Findings

This work concludes that it is necessary to develop data sets that represent the variety of tasks in construction, achieve higher accuracy algorithms, widen the scope of their application and reduce the need for expert validation of the results. Although full automation is not within reach in the short term, TC algorithms can provide helpful support tools.

Originality/value

Given the increasing interest in ML for construction and recent developments, the findings disclosed in this paper contribute to the body of knowledge, provide a more automated perspective on budgeting in construction and break ground for further implementation of text-based ML in budgeting for construction.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 June 2023

Mark Anthony Camilleri

Many educators are increasingly acquainting themselves and becoming adept with interactive technologies like augmented reality and virtual reality. Some of them are also looking…

Abstract

Purpose

Many educators are increasingly acquainting themselves and becoming adept with interactive technologies like augmented reality and virtual reality. Some of them are also looking forward to using Metaverse applications, as they want to benefit from its immersive three-dimensional capabilities. Therefore, the purpose of this study is to critically review the extant literature to investigate how, why, where and when the Metaverse can be used for educational purposes. This study also discusses opportunities, challenges and risks related to this disruptive technology.

Design/methodology/approach

A Preferred Reporting Items for Systematic Reviews and Meta-Analyses rigorous protocol is used to search, extract, scrutinize and synthesize content from high-impact articles focused on the use of the Metaverse technology in the realms of education. Afterwards, this study theorizes on the costs and benefits of using this interactive technology with students.

Findings

A number of researchers are already experimenting with virtual technologies that are very similar to the Metaverse, in different contexts. This research indicates that most students are lured by immersive multi-sensory three-dimensional environments as well as by virtual reality applications that could simulate real-life situations and provide engaging experiences with virtual representations of people, places and objects. On the other hand, this study reveals that educators ought to consider the potential pitfalls of the Metaverse, including privacy breaches and security risks, as well as possible addictions and the development of mental health issues, among others.

Practical implications

Students and educators can use the Metaverse to catapult themselves in a simulated digital universe that could reconfigure their sensory inputs, definitions of space, time and points of access to information. This research calls for the development of regulatory instruments, including sound principles, guidelines and procedures that are intended to safeguard and protect Metaverse users.

Originality/value

This contribution implies that there is scope for educators to continue developing the Metaverse’s virtual spaces to improve their students’ motivations, aptitudes and learning outcomes. This study clarifies that the use of the Metaverse in education can create infinite possibilities to enhance their knowledge, competences and abilities through its immersive applications. Yet this paper also raises awareness about possible challenges in the short term as well on other risks associated to the prolonged use of this captivating technology.

Details

Interactive Technology and Smart Education, vol. 21 no. 2
Type: Research Article
ISSN: 1741-5659

Keywords

Article
Publication date: 9 May 2024

Umair Khan, Aurang Zaib, Anuar Ishak, El-Sayed M. Sherif and Piotr Wróblewski

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable…

Abstract

Purpose

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable them to be controlled and manipulated when ferrofluids are exposed to magnetic fields. This study aims to inspect the features of unsteady stagnation point flow (SPF) and heat flux from the surface by incorporating ferromagnetic particles through a special kind of second-grade fluid (SGF) across a movable sheet with a nonlinear heat source/sink and magnetic field effect. The mass suction/injection and stretching/shrinking boundary conditions are also inspected to calculate the fine points of the features of multiple solutions.

Design/methodology/approach

The leading equations that govern the ferrofluid flow are reduced to a group of ordinary differential equations by applying similarity variables. The converted equations are numerically solved through the bvp4c solver. Afterward, study and discussion are carried out to examine the different physical parameters of the characteristics of nanofluid flow and thermal properties.

Findings

Multiple solutions are revealed to happen for situations of unsteadiness, shrinking as well as stretching sheets. Greater suction slows the separation of the boundary layers and causes the critical values to expand. The region where the multiple solutions appear is observed to expand with increasing values of the magnetic, non-Newtonian and suction parameters. Moreover, the fluid velocity significantly uplifts while the temperature declines due to the suction parameter.

Originality/value

The novelty of the work is to deliberate the impact of mass suction/injection on the unsteady SPF through the special second-grade ferrofluids across a movable sheet with an erratic heat source/sink. The confirmed results provide a very good consistency with the accepted papers. Previous studies have not yet fully explored the entire analysis of the proposed model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 18