Search results

1 – 3 of 3
Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 August 2023

Nor Salwani Hashim and Fatimah De'nan

Castellated and cellular beams achieved the same strength as solid I-beams with the same depth, resulting in significantly lighter and more economical structures. The purpose of…

Abstract

Purpose

Castellated and cellular beams achieved the same strength as solid I-beams with the same depth, resulting in significantly lighter and more economical structures. The purpose of this study is to analyse the bending behaviour of I-beam steel sections with certain web openings by finite element analysis.

Design/methodology/approach

The accuracy of finite element results allows extensive numerical analysis of sections with web openings, concentrating on the web opening sizes and web opening positions. These assumptions can increase the induced section load with various shapes of web opening depth and web opening shapes of c-hexagon, hexagon, octagon, circular and square. This also includes spacing distances, with a 50-mm edge and 150-mm centre-to-centre distance and a section with a 100-mm edge and 200-mm centre-to-centre distance. Generally, the adjustment of the opening geometry (by reducing the angle of web pitch or reducing the opening depth depending on analysed parameters) may influence the bending behaviour.

Findings

Additionally, Model 2 was found to be the optimum model compared to Model 1, mainly in terms of bending. Moreover, the I-beam with a c-hexagon shape opening exhibited the lowest displacement compared to other sections with other web opening shapes. Section with a different arrangement of web opening, Type E shows the lower displacement while higher displacement is observed for Type A and also higher displacement considered for Type G. The optimum model is associated with Type E, followed by Type D, compared to other types of certain web opening and I-beam.

Originality/value

The use of sections with different arrangements of web opening improved the performance of the perforated section in terms of structural behaviour, compared to typical I-beam, thus leading to economic design.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 July 2023

Fatimah De’nan, Chong Shek Wai and Nor Salwani Hashim

Various designs of corrugated webs include trapezoidal, sinusoidal, triangular and rectangular profiles. The increasing use of curved plates has prompted the creation of…

Abstract

Purpose

Various designs of corrugated webs include trapezoidal, sinusoidal, triangular and rectangular profiles. The increasing use of curved plates has prompted the creation of I-sections made of steel with a corrugated web design. This study aims to examine the effectiveness of an I-beam steel section that features a perforated-triangular web profile.

Design/methodology/approach

In the current study, finite element analysis was conducted on corrugated-perforated steel I-sections using ANSYS software. The study focused on inspecting the design of the perforations, including their shape (circle, square, hexagon, diamond and octagon), size of perforations (80 mm, 100 mm and 120 mm) and layout (the position of web perforation), as well as examining the geometric properties of the section in term of bending, lateral torsional buckling, torsion and shear behavior.

Findings

The study revealed that perforations with diamond, circle and hexagon shapes exhibit good performance, whereas the square shape performs poorly. Moreover, the steel section’s performance decreases with an increase in perforation size, regardless of loading conditions. In addition, the shape of the web perforations can also influence its stress distribution. For example, diamond-shaped perforations have been found to perform better than square-shaped perforations in terms of stress distribution and overall performance. This was because of their ability to distribute stress more evenly and provide greater support to the surrounding material. The diagonal alignment of the diamond shape aligns with principal stress directions, allowing for efficient load transfer and reduced stress concentrations. Additionally, diamond-shaped perforations offer a larger effective area, better shear transfer and improved strain redistribution, resulting in enhanced structural integrity and increased load-carrying capacity.

Originality/value

Hence, the presence of lateral-torsional buckling and torsional loading conditions significantly impacts the performance of corrugated-perforated steel I-sections.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3