Search results

1 – 1 of 1
Article
Publication date: 1 April 2003

Patrick Bell, Nils Hoivik, Victor Bright and Zoya Popovic

A frequency tunable half‐wave resonator at 3 GHz is presented with a microelectromechanical systems (MEMS) variable capacitor as the tuning element. The capacitor is fabricated…

Abstract

A frequency tunable half‐wave resonator at 3 GHz is presented with a microelectromechanical systems (MEMS) variable capacitor as the tuning element. The capacitor is fabricated using the multi‐user MEMS process (MUMPs) technology provided by JDS/Cronos, and transferred to an alumina substrate by an in‐house developed flip‐chip process. This capacitor is electrostatically actuated. The resulting CV response is linear with a slope of 0.05 pF/V for a wide range of actuation voltages. The MEMS device has a capacitance ratio of 3:1 for 0‐70 V bias, with a Q‐factor of 140 measured at 1 GHz. A half‐wave tunable microstrip resonator with bias lines is designed to include this MEMS device, which exhibits linear tuning over 180 MHz (6 percent) centered around 3 GHz with a constant 3 dB bandwidth of 160 MHz over the entire tuning range. The power consumption of the MEMS device was measured to be negligible.

Details

Microelectronics International, vol. 20 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Access

Year

All dates (1)

Content type

1 – 1 of 1