Search results

1 – 4 of 4
Article
Publication date: 11 April 2024

Yun Li, Zhe Cheng, Jiangbin Yin, Zhenshan Yang and Ming Xu

Infrastructure financialization plays a critical role in infrastructure development and urban growth around the world. However, on the one hand, the existing research on the…

Abstract

Purpose

Infrastructure financialization plays a critical role in infrastructure development and urban growth around the world. However, on the one hand, the existing research on the infrastructure financialization focuses on qualitative and lacks quantitative country-specific studies. On the other hand, the spatial heterogeneity and influencing factors of infrastructure financialization are ignored. This study takes China as a typical case to identify and analyze the spatial characteristics, development process and impact factors of infrastructure financialization.

Design/methodology/approach

To assess the development and characteristics of infrastructure financialization in China, this study constructs an evaluation index of infrastructure financialization based on the infrastructure financialization ratio (IFR). This study then analyzes the evolution process and spatial pattern of China's infrastructure financialization through the spatial analysis method. Furthermore, this study identifies and quantitatively analyzes the influencing factors of infrastructure financialization based on the spatial Dubin model. Finally, this study offers a policy suggestion as a governance response.

Findings

The results demonstrate that infrastructure financialization effectively promotes the development of infrastructure in China. Second, there are significant spatial differences in China’s infrastructure financialization. Third, many factors affect infrastructure financialization, with government participation having the greatest impact. In addition, over-financialization of infrastructure has the potential to lead to government debt risks, which is a critical challenge the Chinese Government must address. Finally, this study suggests that infrastructure financialization requires more detailed, tailored,and place-specific policy interventions by the government.

Originality/value

This study not only contributes to enriching the knowledge body of global financialization theory but also helps optimize infrastructure investment and financing policies in China and provides peer reference for other developing countries.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 December 2022

Peyman Jafary, Davood Shojaei, Abbas Rajabifard and Tuan Ngo

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different…

Abstract

Purpose

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different stages of the building lifecycle. Real estate valuation, as a fully interconnected field with the AEC industry, can benefit from 3D technical achievements in BIM technologies. Some studies have attempted to use BIM for real estate valuation procedures. However, there is still a limited understanding of appropriate mechanisms to utilize BIM for valuation purposes and the consequent impact that BIM can have on decreasing the existing uncertainties in the valuation methods. Therefore, the paper aims to analyze the literature on BIM for real estate valuation practices.

Design/methodology/approach

This paper presents a systematic review to analyze existing utilizations of BIM for real estate valuation practices, discovers the challenges, limitations and gaps of the current applications and presents potential domains for future investigations. Research was conducted on the Web of Science, Scopus and Google Scholar databases to find relevant references that could contribute to the study. A total of 52 publications including journal papers, conference papers and proceedings, book chapters and PhD and master's theses were identified and thoroughly reviewed. There was no limitation on the starting date of research, but the end date was May 2022.

Findings

Four domains of application have been identified: (1) developing machine learning-based valuation models using the variables that could directly be captured through BIM and industry foundation classes (IFC) data instances of building objects and their attributes; (2) evaluating the capacity of 3D factors extractable from BIM and 3D GIS in increasing the accuracy of existing valuation models; (3) employing BIM for accurate estimation of components of cost approach-based valuation practices; and (4) extraction of useful visual features for real estate valuation from BIM representations instead of 2D images through deep learning and computer vision.

Originality/value

This paper contributes to research efforts on utilization of 3D modeling in real estate valuation practices. In this regard, this paper presents a broad overview of the current applications of BIM for valuation procedures and provides potential ways forward for future investigations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 April 2024

Zoubeir Lafhaj, Slim Rebai, Olfa Hamdi, Rateb Jabbar, Hamdi Ayech and Pascal Yim

This study aims to introduce and evaluate the COPULA framework, a construction project monitoring solution based on blockchain designed to address the inherent challenges of…

Abstract

Purpose

This study aims to introduce and evaluate the COPULA framework, a construction project monitoring solution based on blockchain designed to address the inherent challenges of construction project monitoring and management. This research aims to enhance efficiency, transparency and trust within the dynamic and collaborative environment of the construction industry by leveraging the decentralized, secure and immutable nature of blockchain technology.

Design/methodology/approach

This paper employs a comprehensive approach encompassing the formulation of the COPULA model, the development of a digital solution using the ethereum blockchain and extensive testing to assess performance in terms of execution cost, time, integrity, immutability and security. A case analysis is conducted to demonstrate the practical application and benefits of blockchain technology in real-world construction project monitoring scenarios.

Findings

The findings reveal that the COPULA framework effectively addresses critical issues such as centralization, privacy and security vulnerabilities in construction project management. It facilitates seamless data exchange among stakeholders, ensuring real-time transparency and the creation of a tamper-proof communication channel. The framework demonstrates the potential to significantly enhance project efficiency and foster trust among all parties involved.

Research limitations/implications

While the study provides promising insights into the application of blockchain technology in construction project monitoring, future research could explore the integration of COPULA with existing project management methodologies to broaden its applicability and impact. Further investigations into the solution’s scalability and adaptation to various construction project types and sizes are also suggested.

Originality/value

This research offers a comprehensive blockchain solution specifically tailored for the construction industry. Unlike prior studies focusing on theoretical aspects, this paper presents a practical, end-to-end solution encompassing model formulation, digital implementation, proof-of-concept testing and validation analysis. The COPULA framework marks a significant advancement in the digital transformation of construction project monitoring, providing a novel approach to overcoming longstanding industry challenges.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 4 of 4