Search results

1 – 4 of 4
Article
Publication date: 4 March 2024

Yonghua Huang, Tuanjie Li, Yuming Ning and Yan Zhang

This paper aims to solve the problem of the inability to apply learning methods for robot motion skills based on dynamic movement primitives (DMPs) in tasks with explicit…

Abstract

Purpose

This paper aims to solve the problem of the inability to apply learning methods for robot motion skills based on dynamic movement primitives (DMPs) in tasks with explicit environmental constraints, while ensuring the reliability of the robot system.

Design/methodology/approach

The authors propose a novel DMP that takes into account environmental constraints to enhance the generality of the robot motion skill learning method. First, based on the real-time state of the robot and environmental constraints, the task space is divided into different regions and different control strategies are used in each region. Second, to ensure the effectiveness of the generalized skills (trajectories), the control barrier function is extended to DMP to enforce constraint conditions. Finally, a skill modeling and learning algorithm flow is proposed that takes into account environmental constraints within DMPs.

Findings

By designing numerical simulation and prototype demonstration experiments to study skill learning and generalization under constrained environments. The experimental results demonstrate that the proposed method is capable of generating motion skills that satisfy environmental constraints. It ensures that robots remain in a safe position throughout the execution of generation skills, thereby avoiding any adverse impact on the surrounding environment.

Originality/value

This paper explores further applications of generalized motion skill learning methods on robots, enhancing the efficiency of robot operations in constrained environments, particularly in non-point-constrained environments. The improved methods are applicable to different types of robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 August 2022

Hangjia Dong, Tuanjie Li, Zuowei Wang and Yuming Ning

The inchworm actuator is widely applied in space industry. One of the major issues in space instrumentation is the reliability, especially under space thermal load. The purpose of…

Abstract

Purpose

The inchworm actuator is widely applied in space industry. One of the major issues in space instrumentation is the reliability, especially under space thermal load. The purpose of this paper is to present a numerical calculation method for the inchworm actuator reliability with considering the effect of space temperature.

Design/methodology/approach

First, the structure of designed inchworm actuator is introduced, and the main failure reason is analyzed. Then the wear model is proposed with considering the space temperature, and an experiment device is designed to verify the wear model. Finally, the reliability calculation method is developed based on the working principle of the inchworm actuator.

Findings

The numerical calculation method can be applied to calculate the reliability of the inchworm actuator with considering the space temperature. And the results provide a new perspective to discuss the influences of the temperature and driving voltage on the reliability of inchworm actuators.

Originality/value

This work presents a reliability calculation method of inchworm actuators with considering the space temperature.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 January 2024

Kai Liu, Yuming Liu and Yuanyuan Kou

Inter-organizational collaboration is the organizational guarantee and key link to achieve the goals of megaproject management. Project governance has always played an important…

Abstract

Purpose

Inter-organizational collaboration is the organizational guarantee and key link to achieve the goals of megaproject management. Project governance has always played an important role in the construction of megaprojects, but the relationship between project governance and organizational collaboration is unclear. The purpose of this study is to explore the role paths of different project governance mechanisms in influencing the collaborative behaviors of stakeholders and collaborative performance and to elucidate the mechanism of project governance on inter-organizational collaboration.

Design/methodology/approach

A conceptual framework was developed based on a comprehensive literature review, termed the structural equation model (SEM). The hypotheses of the model were tested based on data obtained from a questionnaire survey of 235 experts with experience in megaprojects within the construction industry in China.

Findings

The results show that project governance positively contributes to the collaborative behavior of megaproject stakeholders and the collaborative performance of the project team. Collaborative behavior acts as a partial mediator between project governance and the collaborative performance of the megaproject inter-organization alliance. The complexity of the project modulates the relationship between the governance mechanism of the project and the collaborative behavior of the stakeholders, which affects the collaborative performance of the megaproject inter-organization alliance.

Originality/value

The findings provide theoretical and practical implications for promoting positive collaborative behavior among stakeholders in megaproject selection and improving the collaborative performance of megaproject inter-organization alliances.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 February 2023

Kai Liu, Yuming Liu, Yuanyuan Kou and Xiaoxu Yang

The mega railway infrastructure projects are faced with complex environments and multi-level management challenges. Thus, the mega railway infrastructure project management system…

Abstract

Purpose

The mega railway infrastructure projects are faced with complex environments and multi-level management challenges. Thus, the mega railway infrastructure project management system not only needs to focus on its composition, but also needs to consider changes and impacts of internal and external environment.

Design/methodology/approach

This study attempts to introduce the concept of dissipative structure from the perspective of complexity theory and constructs a positive entropy and negentropy flow index system for mega railway infrastructure project management system in order to analyze the factors of management system more deeply. The Brusselator model is used to construct the structure of the mega railway infrastructure project management system, and the entropy method is used to calculate the positive entropy and negentropy values to verify whether the management system is a dissipative structure.

Findings

A plateau railway project in China was used as an example for an empirical study, not only its own characteristics are analyzed, but also the role of constraints and facilitation of the internal and external environment. Based on the research results, several effective suggestions are put forward to improve the stability and work efficiency of mega railway infrastructure project management system.

Originality/value

This study demonstrates that mega railway infrastructure project management system has the characteristics of dissipative structure. It can provide theoretical support for the development of mega railway infrastructure project management system from disorderly state to orderly state.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 4 of 4