Search results

1 – 6 of 6
Article
Publication date: 7 May 2024

Haonan Qi, Zhipeng Zhou, Javier Irizarry, Xiaopeng Deng, Yifan Yang, Nan Li and Jianliang Zhou

This study aims to modify the human factors analysis and classification system (HFACS) to make it suitable for collapse accident analysis in construction. Based upon the modified…

Abstract

Purpose

This study aims to modify the human factors analysis and classification system (HFACS) to make it suitable for collapse accident analysis in construction. Based upon the modified HFACS, distribution patterns of causal factors across multiple levels were discerned among causal factors of various stakeholders at construction sites. It explored the correlations between two causal factors from different levels and further determined causation paths from two perspectives of level and stakeholder.

Design/methodology/approach

The main research framework consisted of data collection, coding and analysis. Collapse accident reports were collected with adequate causation information. The modified HFACS was utilized for coding causal factors across all five levels in each case. A hybrid approach with two perspectives of level and stakeholder was proposed for frequency analysis, correlation analysis and path identification between causal factors.

Findings

Eight causal factors from external organizations at the fifth level were added to the original HFACS. Level-based correlation analyses and path identification provided safety managers with a holistic view of inter-connected causal factors across five levels. Stakeholder-based correlation analyses between causal factors from the fifth level and its non-adjacent levels were implemented based on client, government and third parties. These identified paths were useful for different stakeholders to develop specific safety plans for avoiding construction collapse accidents.

Originality/value

This paper fulfils an identified need to modify and utilize the HFACS model for correlation analysis and path identification of causal factors resulting in collapse accidents, which can provide opportunities for tailoring preventive and protective measures at construction sites.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 10 January 2024

Yifan Shi, Yuan Wang, Xiaozhou Liu and Ping Wang

Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth…

Abstract

Purpose

Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a 5-m wavelength range, leaving a significant knowledge gap in this field.

Design/methodology/approach

In this study, the authors used the well-established inertial reference method (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methods have been applied in different types of rail straightness measurement trollies, respectively. These instruments were tested in a high-speed rail section within a certain region of China. The test results were ultimately validated through using traditional straightedge and feeler gauge methods as reference data to evaluate the rail weld joint straightness within the 5-m wavelength range.

Findings

The research reveals that IR-method and MCR-method produce reasonably similar measurement results for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy for wavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed, carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.

Originality/value

The research compare two methods’ measurement effects in a longer wavelength range and demonstrate the superiority of MCR-method.

Article
Publication date: 24 April 2024

Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…

Abstract

Purpose

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.

Design/methodology/approach

A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.

Findings

The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.

Originality/value

The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 April 2024

Rabail Tariq, Yifan Wang and Khawaja Fawad Latif

Through the lens of resource-based view (RBV), knowledge-based view (KBV) and DCV, this paper aims to investigate the relationship of entrepreneurial leadership (EL) on the…

Abstract

Purpose

Through the lens of resource-based view (RBV), knowledge-based view (KBV) and DCV, this paper aims to investigate the relationship of entrepreneurial leadership (EL) on the project success (PS) and further examines the mediating effect of knowledge infrastructure capability (KIC), knowledge-based dynamic capability (KBDC) and Big data analytic capability (BDAC).

Design/methodology/approach

The data were collected from 467 employees working on project in software companies. The data were evaluated using SMART-PLS, a structural equation modeling (SEM) tool.

Findings

The study revealed a significant impact of EL on the PS, the study also found the significant mediation role of KIC, KBDC and BDAC on the EL and PS relationship.

Originality/value

The research gives valuable insight into the effective role of EL as a contemporary leadership style in project-based firms. Also, this research is one of the first to examine knowledge-oriented dynamic capabilities (DC) as a knowledge fulcrum in project execution. These DC have been empirically proven to facilitate EL in achieving PS and support the firm in competing in an uncertain environment.

Details

Journal of Enterprise Information Management, vol. 37 no. 3
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 February 2024

Xin Feng, Lei Yu, Weilong Tu and Guoqiang Chen

With the development of science and technology, more creators are trying to use new crafts to represent the cultural trends of the social media era, which makes cultural heritage…

Abstract

Purpose

With the development of science and technology, more creators are trying to use new crafts to represent the cultural trends of the social media era, which makes cultural heritage innovative and new genres emerge. This compels the academic community to examine craft from a new perspective. It is very helpful to understand the hidden representational structure of craft more deeply and improve the craft innovation system of cultural and creative products that we deconstruct the craft based on Complex Network and discover its intrinsic connections.

Design/methodology/approach

The research crawled and cleaned the craft information of the top 20% products on the Forbidden City’s cultural and creative products online and then performed Complex Network modeling, constructed three craft representation networks among function, material and technique, quantified and analyzed the inner connections and network structure of the craft elements, and then analyzed the cultural inheritance and innovation embedded in the craft representation networks.

Findings

The three dichotomous craft representation networks constructed by combining function, material and technique: (1) the network density is low and none of them has small-world characteristics, indicating that the innovative heritage of the craft elements in the Forbidden City’s cultural and creative products is at the stage of continuous exploration and development, and multiple coupling innovation is still insufficient; (2) all have scale-free characteristics and there is still a certain degree of community structure within each network, indicating that the coupling innovation of craft elements of the Forbidden City’s cultural and creative products is seriously uneven, with some specific “grammatical combinations” and an Island Effect in the network structure; (3) the craft elements with high network centrality emphasize the characteristics of decorative culture and design for the masses, as well as the pursuit of production efficiency and economic benefits, which represent the aesthetic purport of contemporary Chinese society and the ideological trend of production and life.

Originality/value

The Forbidden City’s cultural and creative products should continue to develop and enrich the multi-coupling innovation of craft elements, clarify and continue their own brand unique craft genes, and make full use of the network important nodes role.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

1 – 6 of 6