Search results

1 – 3 of 3
Article
Publication date: 14 May 2024

Ting Wang and Jiangyuan Wang

We expect to provide a complete theoretical framework and large sample evidence on the impact of corporate social responsibility (CSR) on the efficiency of labor investment. We…

Abstract

Purpose

We expect to provide a complete theoretical framework and large sample evidence on the impact of corporate social responsibility (CSR) on the efficiency of labor investment. We also hope to provide micro-evidence based on labor investment behavior for the two-sided impact of corporate CSR behavior.

Design/methodology/approach

This paper measures labor investment efficiency by estimating the difference between actual and expected net hiring of enterprises. CSR is measured on the basis of the CSR score of Chinese listed companies published by Hexun.com. A regression model is constructed to analyze the relationship between CSR and labor investment efficiency. Possible endogeneity problems are controlled by lagging independent variables, propensity score matching method and difference-in-difference method.

Findings

Results show that CSR can improve labor investment efficiency by reducing over-hiring and under-hiring in emerging markets. The existence of the mediating effect of agency cost, information disclosure quality and employment fluctuation confirms that CSR improves labor investment efficiency through two mechanisms of corporate governance and labor market friction. The improvement effect of CSR on labor investment efficiency is more significant in non-state-owned, high CEO shareholding ratio and high-average urban wage enterprises.

Originality/value

In conclusion, our study is an important supplement to the existing research on the factors affecting labor investment efficiency. Our research conclusions will be helpful for enterprises in developing countries or enterprises in labor-intensive industries to improve labor investment inefficiency. The conclusion of the mechanism analysis in this paper provides more complete and reliable microscopic evidence for accurately identifying the specific path of CSR's impact on labor investment efficiency. This paper verifies the positive impact of CSR from the perspective of labor investment efficiency in the context of a developing country, which provides evidence for the theoretical conflicts related to CSR based on the effectiveness of enterprise labor investment decisions.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

Article
Publication date: 16 May 2024

Xingyu Qu, Zhenyang Li, Qilong Chen, Chengkun Peng and Qinghe Wang

In response to the severe lag in tracking the response of the Stewart stability platform after adding overload, as well as the impact of nonlinear factors such as load and…

Abstract

Purpose

In response to the severe lag in tracking the response of the Stewart stability platform after adding overload, as well as the impact of nonlinear factors such as load and friction on stability accuracy, a new error attenuation function and a parallel stable platform active disturbance rejection control (ADRC) strategy combining cascade extended state observer (ESO) are proposed.

Design/methodology/approach

First, through kinematic modeling of the Stewart platform, the relationship between the desired pose and the control quantities of the six hydraulic cylinders is obtained. Then, a linear nonlinear disturbance observer was established to observe noise and load, to enhance the system’s anti-interference ability. Finally, verification was conducted through simulation.

Findings

Finally, stability analysis was conducted on the cascaded observer. Experiments were carried out on a parallel stable platform with six degrees of freedom involving rotation and translation. In comparison to traditional PID and ADRC control methods, the proposed control strategy not only endows the stable platform with strong antiload disturbance capability but also exhibits faster response speed and higher stability accuracy.

Originality/value

A new error attenuation function is designed to address the lack of smoothness at d in the error attenuation function of the ADRC controller, reducing the system ripple caused by it. Finally, a combination of linear and nonlinear ESOs is introduced to enhance the system's response speed and its ability to observe noise and load disturbances. Stability analysis of the cascade observer is carried out, and experiments are conducted on a six-degree-of-freedom parallel stable platform with both rotational and translational motion.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Access

Year

Last week (3)

Content type

Earlycite article (3)
1 – 3 of 3