Search results

1 – 1 of 1
Article
Publication date: 5 May 2015

F. Aziz, K. Sulaiman, Wissam Khayer Al-Rawi, Z. Ahmad, M.H. Sayyad, Kh. S. Karimov, L.L. Wei and M. Tahir

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl…

Abstract

Purpose

The purpose of this paper is to investigate the effect of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) on improvement of physical and electrical properties of vanadyl phthalocyanine derivative. The correlation between the physical characteristics of the active layers, comprising vanadyl 2,9,16, 23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO) and PCBM, and the electrical properties of metal/organic/metal devices have been studied. The use of soluble vanadyl phthalocyanine derivative makes it very attractive for a variety of applications due to its tunable properties and high solubility.

Design/methodology/approach

The sandwich type structures Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al were fabricated by spin casting the active organic layers between the top and bottom (aluminum) electrodes. The stand-alone (VOPcPhO) and composite (VOPcPhO:PCBM) thin films were characterized by X-ray diffraction, atomic force microscopy, UV/Vis and Raman spectroscopy. The electronic properties of the metal/organic/metal devices were studied using current-voltage (I-V) characteristics in dark at room temperature.

Findings

The values of barrier height for Al/VOPcPhO/Al and Al/VOPcPhO:PCBM/Al devices were obtained from the forward bias I-V curves and were found to be 0.7 eV and 0.62 eV, respectively. The present study indicates that the device employing VOPcPhO:PCBM composite film as the active layer, with better structural and morphological characteristics, results in reduced barrier height at the metal-organic film interface as compared to the one fabricated with the stand-alone film.

Research limitations/implications

It is shown that doping VOPcPhO with PCBM improves the crystallinity, morphology and junction properties.

Practical implications

The spin coating technique provides a simple, less expensive and effective approach for preparing thin films. The soluble VOPcPhO is conveniently dissolved in a number of organic solvents.

Originality/value

The physical properties of the VOPcPhO:PCBM composite thin film and the electrical properties of the composite thin-film-based metal/organic/metal devices have not been reported in the literature, as far as our knowledge is concerned.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 1 of 1