Search results

1 – 10 of 26
Article
Publication date: 25 September 2023

Huang Taiming, JingMao Ma, Li Zhang, Pan Hao, MingChen Feng, Wei Zeng and Changjie Ou

The purpose of this study is investigate the transient aerodynamic characteristics of high-speed vehicle with body roll motion under crosswind condition to improve aerodynamic…

102

Abstract

Purpose

The purpose of this study is investigate the transient aerodynamic characteristics of high-speed vehicle with body roll motion under crosswind condition to improve aerodynamic stability.

Design/methodology/approach

An overset mesh was used to simulate the rolling motion of the vehicle body. A wind tunnel experiment was conducted to validate the numerical method.

Findings

The results revealed that the vehicle’s aerodynamic characteristics changed periodically with the body’s periodic motion. In the absence of crosswind, the pressure distribution on the left and right sides of the vehicle body was symmetrical, and the speed streamline flowed to the rear of the vehicle in an orderly manner. The maximum aerodynamic lift observed in the transient simulation was −0.089, which is approximately 0.70 times that of the quasi-static simulation experiment. In addition, the maximum aerodynamic side force observed in the transient simulation was 0.654, which is approximately 1.25 times that of the quasi-static simulation experiment.

Originality/value

The aerodynamic load varies periodically with the vehicle body’s cyclic motion. However, the extreme values of the aerodynamic load do not occur when the vehicle body is at its highest or lowest position. This phenomenon is primarily attributed to the mutual interference of airflow viscosity and the hysteresis effect in the flow field, leading to the formation of a substantial vortex near the wheel. Consequently, the aerodynamic coefficient at each horizontal position becomes inconsistent during the periodic rolling of the vehicle body.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 February 2024

Zhen Chen, Jing Liu, Chao Ma, Huawei Wu and Zhi Li

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Abstract

Purpose

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Design/methodology/approach

Error sources in computational fluid dynamics were analyzed. Additionally, controllable experiential and discretization errors, which significantly influence the calculated results, are expounded upon. Considering the airflow mechanism around a vehicle, the computational efficiency and accuracy of each solution strategy were compared and analyzed through numerous computational cases. Finally, the most suitable numerical strategy, including the turbulence model, simplified vehicle model, calculation domain, boundary conditions, grids and discretization scheme, was identified. Two simplified vehicle models were introduced, and relevant wind tunnel tests were performed to validate the selected strategy.

Findings

Errors in vehicle computational aerodynamics mainly stem from the unreasonable simplification of the vehicle model, calculation domain, definite solution conditions, grid strategy and discretization schemes. Using the proposed standardized numerical strategy, the simulated steady and transient aerodynamic characteristics agreed well with the experimental results.

Originality/value

Building upon the modified Low-Reynolds Number k-e model and Scale Adaptive Simulation model, to the best of the authors’ knowledge, a precise and standardized numerical simulation strategy for vehicle aerodynamics is proposed for the first time, which can be integrated into vehicle research and design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 August 2023

Zhiqi Liu, Tanghong Liu, Hongrui Gao, Houyu Gu, Yutao Xia and Bin Xu

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve…

Abstract

Purpose

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve the wind-sheltering performance of the porous wind barriers.

Design/methodology/approach

Improved delayed detached eddy simulations based on the k-ω turbulence model were carried out, and the results were validated with wind tunnel tests. The effects of the hole diameter on the flow characteristics and wind-sheltering performance were studied by comparing the wind barriers with the porosity of 21.6% and the hole diameters of 60 mm–360 mm. The flow characteristics above the windward and leeward tracks were analyzed, and the wind-sheltering performance of the wind barriers was assessed using the wind speed reduction coefficients.

Findings

The hole diameters affected the jet behind the wind barriers and the recirculation region above the tracks. Below the top of the wind barriers, the time-averaged velocity first decreased and then increased with the increase in the hole diameter. The wind barrier with the hole diameter of 120 mm had the best wind-sheltering performance for the windward track, but such barrier might lead to overprotection on the leeward track. The wind-sheltering performance of the wind barriers with the hole diameters of 240 mm and 360 mm was significantly degraded, especially above the windward track.

Originality/value

The effects of the hole diameters on the wake and wind-sheltering performance of the wind barriers were studied, by which the theoretical basis is provided for a better design of the porous wind barrier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 January 2024

Tong-Tong Lin, Ming-Zhi Yang, Lei Zhang, Tian-Tian Wang, Yu Tao and Sha Zhong

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in…

Abstract

Purpose

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in operation. The arch structure has a significant effect on the improvement of the aerodynamic lift of the HC and TC of the maglev train. Therefore, this study aims to investigate the effect of a streamlined arch structure on the aerodynamic performance of a 600 km/h maglev train.

Design/methodology/approach

Three typical streamlined arch structures for maglev trains are selected, i.e. single-arch, double-arch and triple-arch maglev trains. The vortex structure, pressure of train surface, boundary layer, slipstream and aerodynamic forces of the maglev trains with different arch structures are compared by adopting improved delayed detached eddy simulation numerical calculation method. The effects of the arch structures on the aerodynamic performance of the maglev train are analyzed.

Findings

The dynamic topological structure of the wake flow shows that a change in arch structure can reduce the vortex size in the wake region; the vortex size with double-arch and triple-arch maglev trains is reduced by 15.9% and 23%, respectively, compared with a single-arch maglev train. The peak slipstream decreases with an increase in arch structures; double-arch and triple-arch maglev trains reduce it by 8.89% and 16.67%, respectively, compared with a single-arch maglev train. The aerodynamic force indicates that arch structures improve the lift imbalance between the HC and TC of a maglev train; double-arch and triple-arch maglev trains improve it by 22.4% and 36.8%, respectively, compared to a single-arch maglev train.

Originality/value

This study compares the effects of a streamlined arch structure on a maglev train and its surrounding flow field. The results of the study provide data support for the design and safe operation of high-speed maglev trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 December 2023

Jianbin Luo, Mingsen Li, Ke Mi, Zhida Liang, Xiaofeng Chen, Lei Ye, Yuanhao Tie, Song Xu, Haiguo Zhang, Guiguang Chen and Chunmei Jiang

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics…

Abstract

Purpose

The purpose of this paper is to study the aerodynamic characteristics of Ahmed body in longitudinal and lateral platoons under crosswind by computational fluid dynamics simulation. It helps to improve the aerodynamic characteristics of vehicles by providing theoretical basis and engineering direction for the development and progress of intelligent transportation.

Design/methodology/approach

A two-car platoon model is used to compare with the experiment to prove the accuracy of the simulation method. The simplified Ahmed body model and the Reynolds Averaged N-S equation method are used to study the aerodynamic characteristics of vehicles at different distances under cross-winds.

Findings

When the longitudinal distance x/L = 0.25, the drag coefficients of the middle and trailing cars at β = 30° are improved by about 272% and 160% compared with β = 10°. The side force coefficients of the middle and trailing cars are increased by 50% and 62%. When the lateral distance y/W = 0.25, the side force coefficients of left and middle cars at β = 30° are reduced by 38% and 37.5% compared with β = 10°. However, the side force coefficient of the right car are increased by about 84.3%.

Originality/value

Most of the researches focus on the overtaking process, and there are few researches on the neat lateral platoon. The innovation of this paper is that in addition to studying the aerodynamic characteristics of longitudinal driving, the aerodynamic characteristics of neat lateral driving are also studied, and crosswind conditions are added. The authors hope to contribute to the development of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 22 November 2023

En-Ze Rui, Guang-Zhi Zeng, Yi-Qing Ni, Zheng-Wei Chen and Shuo Hao

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural…

Abstract

Purpose

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN), which was proposed to encode physical laws into neural networks, is a less data-demanding approach for flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions under the PINN framework. This study aims to propose a physics-based data-driven approach for time-averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach

A multifidelity strategy leveraging PINN and a nonlinear information fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINN which is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model, which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings

Two experimental cases are used to verify the capability and efficacy of the proposed strategy through comparison with other widely used strategies. It is revealed that the missing flow information within the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the accuracy of reconstruction.

Originality/value

In this study, a physics-informed data-driven strategy for time-averaged flow field reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding physical laws when training the multifidelity model leads to less data demand for model development compared to purely data-driven methods for flow field reconstruction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Wei Jiang, Ray C. Chang, Ning Yang and Ying Xu

The purpose of this paper is to present a comparative study of flight circumstances, dynamic stability characteristics and controllability for two transport aircraft in severe…

Abstract

Purpose

The purpose of this paper is to present a comparative study of flight circumstances, dynamic stability characteristics and controllability for two transport aircraft in severe atmospheric turbulence at transonic cruise flight for the purpose to obtain the prevention concepts of injuries to passengers and crew members for pilot training in International Air Transport Association (IATA) – Loss of Control In-flight (LOC-I) program.

Design/methodology/approach

A twin-jet and a four-jet transport aircraft encountering severe atmospheric turbulence are the study cases for this paper. The nonlinear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling technique based on the flight data of flight data recorder. This method can be adopted to examine the influence of horizontal wind shear and crosswind on loss of control, dynamic stability characteristics and controllability for transport aircraft in different weights and different sizes in tracking aviation safety of existing different types of aircraft.

Findings

The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiate the sudden plunging motion during the turbulence encounter. The roll rate will increase the oscillatory rolling motion during plunging motion, if the rolling damping is insufficient. The drop-off altitude will be enlarged by the oscillatory rolling motion during the sudden plunging motion.

Research limitations/implications

A lack of the measurement data of vertical wind speed sensor on board to verify the estimated values of damping term is one of the research limitations for this study. The fact or condition of being severe in sudden plunging motion can be judged through the analysis of oscillatory derivatives with both dynamic stability and damping terms.

Practical implications

The roll rate will increase the oscillatory rolling motion during plunging motion, if the rolling damping is insufficient. The drop-off altitude will be enlarged by the oscillatory rolling motion during the sudden plunging motion. The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiated the sudden plunging motion during the turbulence encounter. If the drift angle is large, to turn off the autopilot of yaw control first and stabilize the rudder by the pedal. When passing through the atmosphere turbulence area, the pilots do not need to amend the heading angle urgently.

Social implications

The flight safety prevention in avoidance of injuries for passengers and cabin crews is essential for the airlines. The horizontal wind shear or crosswind before the turbulence encounter will easily induce rolling motion and then initiated the sudden plunging motion during the turbulence encounter.

Originality/value

The flight safety prevention in avoidance of injuries for passengers and cabin crews is essential. The present assessment method is an innovation to examine the loss of control problems of aviation safety and promote the understanding of aerodynamic responses of the jet transport aircraft. It is expected to provide a valuable lecture for the international training courses for IATA – LOC-I program after this paper is being published.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 July 2023

Hatice Cansu Ayaz Ümütlü, Zeki Kiral and Ziya Haktan Karadeniz

The purpose of this study is to identify the possible relation between the vibration and the stall by using the vibration response of the airfoil. For this purpose, the root mean…

243

Abstract

Purpose

The purpose of this study is to identify the possible relation between the vibration and the stall by using the vibration response of the airfoil. For this purpose, the root mean square values of the acceleration signals are evaluated to demonstrate the compatibility between the stall angles and the vibration levels.

Design/methodology/approach

An experimental study is conducted on NACA 4415 airfoil at Reynolds numbers 69e3, 77e3 and 85e3. Experiments are performed from 0° to 25° of the angles of attack (AoA) for each Reynolds number condition. To observe the change of the vibration values at the stall region clearly, experiments are performed with the AoA ranging from 10° to 25° in 1° increments. Three acceleration sensors are used to obtain the vibration data.

Findings

The results show that the increase in the amplitude of the vibration is directly related to the decrease in lift. These findings indicate that this approach could be beneficial in detecting stall on airfoil-type structures.

Originality/value

This study proposes a new approach for detecting stall over the airfoil using the vibration data.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 26