Search results

1 – 10 of 33
Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 30 May 2024

Liang Wang, Shoukun Wang and Junzheng Wang

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims…

Abstract

Purpose

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims to propose a coordinated torque distribution control approach that compensates for tracking deviations using the longitudinal moment generated by active steering.

Design/methodology/approach

Building upon a two-degree-of-freedom robot model, an adaptive robust controller is used to compute the total longitudinal moment, while the robot actuator is regulated based on the difference between autonomous steering and the longitudinal moment. An adaptive robust control scheme is developed to achieve accurate and stable generation of the desired total moment value. Furthermore, quadratic programming is used for torque allocation, optimizing maneuverability and tracking precision by considering the robot’s dynamic model, tire load rate and maximum motor torque output.

Findings

Comparative evaluations with autonomous steering Ackermann speed control and the average torque method validate the superior performance of the proposed control strategy, demonstrating improved tracking accuracy and robot stability under diverse driving conditions.

Research limitations/implications

When designing adaptive algorithms, using models with higher degrees of freedom can enhance accuracy. Furthermore, incorporating additional objective functions in moment distribution can be explored to enhance adaptability, particularly in extreme environments.

Originality/value

By combining this method with the path-tracking algorithm, the robot’s structural path-tracking capabilities and ability to navigate a variety of difficult terrains can be optimized and improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 August 2024

Willy John Nakamura Goto, Douglas Wildgrube Bertol and Nardênio Almeida Martins

This paper aims to propose a robust kinematic controller based on sliding mode theory designed to solve the trajectory tracking problem and also the formation control using the…

Abstract

Purpose

This paper aims to propose a robust kinematic controller based on sliding mode theory designed to solve the trajectory tracking problem and also the formation control using the leader–follower strategy for nonholonomic differential-drive wheeled mobile robots with a PD dynamic controller.

Design/methodology/approach

To deal with classical sliding mode control shortcomings, such as the chattering and the requirement of a priori knowledge of the limits of the effects of disturbances, an immune regulation mechanism-inspired approach is proposed to adjust the control effort magnitude adaptively. A simple fuzzy boundary layer method and an adaptation law for the immune portion gain online adjustment are also considered. An obstacle avoidance reactive strategy is proposed for the leader robot, given the importance of the leader in the formation control structure.

Findings

To verify the adaptability of the controller, obstacles are distributed along the reference trajectory, and the simulation and experimental results show the effectiveness of the proposed controller, which was capable of generating control signals avoiding chattering, compensating for disturbances and avoiding the obstacles.

Originality/value

The proposed design stands out for the ability to adapt in a case involving obstacle avoidance, trajectory tracking and leader–follower formation control by nonholonomic robots under the incidence of uncertainties and disturbances and also considering that the immune-based control provided chattering mitigation by adjusting the magnitude of the control effort, with adaptability improved by a simple integral-type adaptive law derived by Lyapunov stability analysis.

Article
Publication date: 2 September 2024

Yiting Kang, Biao Xue, Jianshu Wei, Riya Zeng, Mengbo Yan and Fei Li

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid…

14

Abstract

Purpose

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid model of torque prediction, adaptive EC-GPR, for mobile robots to address the problem of estimating the required driving torque with unknown terrain disturbances.

Design/methodology/approach

An error compensation (EC) framework is used, and the preliminary prediction driving torque value is achieved using Gaussian process regression (GPR). The error is predicted using a continuous hidden Markov model to generate compensation for the prediction residual caused by terrain disturbances and uncertainties. As the final step, a gain coefficient is used to adaptively tune the significance of the compensation term through parameter resetting. The proposed model is verified on a sample set, including the driving torque of a mobile robot on three different sandy terrains with two driving modes.

Findings

The results show that the adaptive EC-GPR yields the highest prediction accuracy when compared with existing methods.

Originality/value

It is demonstrated that the proposed model can predict the driving torque accurately for mobile robots in an unconstructed environment without terrain identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 July 2024

Run Yang, Jingru Li, Taiyun Zhu, Di Hu and Erbao Dong

Gas-insulated switchgear (GIS) stands as a pivotal component in power systems, susceptible to partial discharge occurrences. Nevertheless, manual inspection proves…

Abstract

Purpose

Gas-insulated switchgear (GIS) stands as a pivotal component in power systems, susceptible to partial discharge occurrences. Nevertheless, manual inspection proves labor-intensive, exhibits a low defect detection rate. Conventional inspection robots face limitations, unable to perform live line measurements or adapt effectively to diverse environmental conditions. This paper aims to introduce a novel solution: the GIS ultrasonic partial discharge detection robot (GBOT), designed to assume the role of substation personnel in inspection tasks.

Design/methodology/approach

GBOT is a mobile manipulator system divided into three subsystems: autonomous location and navigation, vision-guided and force-controlled manipulator and data detection and analysis. These subsystems collaborate, incorporating simultaneous localization and mapping, path planning, target recognition and signal processing, admittance control. This paper also introduces a path planning method designed to adapt to the substation environment. In addition, a flexible end effector is designed for full contact between the probe and the device.

Findings

The robot fulfills the requirements for substation GIS inspections. It can conduct efficient and low-cost path planning with narrow passages in the constructed substation map, realizes a sufficiently stable detection contact and perform high defect detection rate.

Practical implications

The robot mitigates the labor intensity of grid maintenance personnel, enhances inspection efficiency and safety and advances the intelligence and digitization of power equipment maintenance and monitoring. This research also provides valuable insights for the broader application of mobile manipulators in diverse fields.

Originality/value

The robot is a mobile manipulator system used in GIS detection, offering a viable alternative to grid personnel for equipment inspections. Comparing with the previous robotic systems, this system can work in live electrical detection, demonstrating robust environmental adaptability and superior efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 July 2024

Peng Wu, Heng Su, Hao Dong, Tengfei Liu, Min Li and Zhihao Chen

Robotic arms play a crucial role in various industrial operations, such as sorting, assembly, handling and spraying. However, traditional robotic arm control algorithms often…

Abstract

Purpose

Robotic arms play a crucial role in various industrial operations, such as sorting, assembly, handling and spraying. However, traditional robotic arm control algorithms often struggle to adapt when faced with the challenge of dynamic obstacles. This paper aims to propose a dynamic obstacle avoidance method based on reinforcement learning to address real-time processing of dynamic obstacles.

Design/methodology/approach

This paper introduces an innovative method that introduces a feature extraction network that integrates gating mechanisms on the basis of traditional reinforcement learning algorithms. Additionally, an adaptive dynamic reward mechanism is designed to optimize the obstacle avoidance strategy.

Findings

Validation through the CoppeliaSim simulation environment and on-site testing has demonstrated the method's capability to effectively evade randomly moving obstacles, with a significant improvement in the convergence speed compared to traditional algorithms.

Originality/value

The proposed dynamic obstacle avoidance method based on Reinforcement Learning not only accomplishes the task of dynamic obstacle avoidance efficiently but also offers a distinct advantage in terms of convergence speed. This approach provides a novel solution to the obstacle avoidance methods for robotic arms.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 July 2024

Yan Xu, Yaqiu Liu, Xun Liu, Baoyu Wang, Lin Zhang and Zhengwen Nie

The purpose of this study is to address the welding demands within large steel structures by presenting a global spatial motion planning algorithm for a mobile manipulator. This…

Abstract

Purpose

The purpose of this study is to address the welding demands within large steel structures by presenting a global spatial motion planning algorithm for a mobile manipulator. This algorithm is based on an independently developed wall-climbing robot, which comprises a four-wheeled climbing mobile platform and a six-degree-of-freedom robotic manipulator, ensuring high mobility and operational flexibility.

Design/methodology/approach

A convex hull feasible domain constraint is developed for motion planning in the mobile manipulator. For extensive spatial movements, connected sequences of convex polyhedra are established between the composite robot’s initial and target states. The composite robot’s path and obstacle avoidance optimization problem are solved by constraining the control points on B-spline curves. A dynamic spatial constraint rapidlye-xploring random trees-connect (RRTC) motion planning algorithm is proposed for the manipulator, which quickly generates reference paths using spherical spatial constraints at the manipulator’s end, eliminating the need for complex nonconvex constraint modeling.

Findings

Experimental results show that the proposed motion planning algorithm achieves optimal paths that meet task constraints, significantly reducing computation times in task conditions and shortening operation times in non-task conditions.

Originality/value

The algorithm proposed in this paper holds certain application value for the realization of automated welding operations within large steel structures using mobile manipulator.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 August 2024

Linjie Dong, Renfei Zhang, Xiaohan Liu, Jie Li, Xingsong Wang and Tian Mengqian

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities…

Abstract

Purpose

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities in traversing obstacles and lack a mechanical arm for detecting cables and equipment. This study aims to develop an intelligent robot for cable trench inspection, enhancing obstacle-crossing abilities and incorporating a mechanical arm for inspection tasks.

Design/methodology/approach

This study presents an intelligent robot for cable trench inspection, featuring a six-degree-of-freedom mechanical arm mounted on a six-track chassis with four flippers. The robot's climbing and obstacle-crossing stability, as well as the motion range of the mechanical arm, are analyzed. The positioning, navigation and remote monitoring systems are developed. Experiments, including climbing and obstacle-crossing performance tests, along with navigation and positioning system tests, are conducted. Finally, the robot's practicability is verified through field testing.

Findings

Equipped with flipper tracks, the cable trench inspection robot can traverse obstacles up to 30 cm high and maintain stable locomotion on 30° slopes. Its navigation system enables autonomous operation, while the mechanical arm performs cable current detection tasks. The remote monitoring system provides comprehensive control of the robot and environmental parameter monitoring in cable trenches.

Originality/value

The front and rear flipper tracks enhance the robot's ability to traverse obstacles in cable trenches. The mechanical arm addresses cable current and equipment contact detection issues. The navigation and remote monitoring systems improve the robot's autonomous operation and environmental monitoring capabilities. Implementing this robot can advance the automation and intelligence of cable trench inspections.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 33