Search results

1 – 10 of 25
Content available
Article
Publication date: 1 December 2004

96

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 3 May 2022

Qingxiang Zhou, Fang Liu, Jingming Li, Jiankui Li, Shuangnan Zhang and Guixi Cai

This study aims to solve the problem of weld quality inspection, for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin…

Abstract

Purpose

This study aims to solve the problem of weld quality inspection, for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness (2–4 mm), the conventional nondestructive testing method of weld quality is difficult to implement.

Design/methodology/approach

In order to solve this problem, the ultrasonic creeping wave detection technology was proposed. The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks. The detection technology was used to test the actual welded test blocks, and compared with the results of X-ray test and destructive test (tensile test) to verify the accuracy of the ultrasonic creeping wave test results.

Findings

It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects. However, due to special detection method and protection, the detection speed is slow, which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body. It can be used as an auxiliary detection method for a small number of sampling inspection. The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more, the results of creeping wave detection correspond well with the actual incomplete penetration defects.

Originality/value

The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints. It is recommended to use the echo amplitude of the 10 mm × 0.2 mm × 0.5 mm notch as the criterion for weld qualification.

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 1 April 2005

76

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 6 September 2022

Agnieszka Chmielewska, Bartlomiej Adam Wysocki, Elżbieta Gadalińska, Eric MacDonald, Bogusława Adamczyk-Cieślak, David Dean and Wojciech Świeszkowski

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium…

1323

Abstract

Purpose

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium powders using laser powder bed fusion (LPBF). In addition, the influence of manufacturing parameters and different melting strategies, including multiple cycles of remelting, on printability and macro defects, such as pore and crack formation, have been investigated.

Design/methodology/approach

An LPBF process was used to manufacture NiTi alloy from elementally blended powders and was evaluated with the use of a remelting scanning strategy to improve the homogeneity of fabricated specimens. Furthermore, both single melt and up to two remeltings were used.

Findings

The results indicate that remelting can be beneficial for density improvement as well as chemical and phase composition homogenization. Backscattered electron mode in scanning electron microscope showed a reduction in the presence of unmixed Ni and Ti elemental powders in response to increasing the number of remelts. The microhardness values of NiTi parts for the different numbers of melts studied were similar and ranged from 487 to 495 HV. Nevertheless, it was observed that measurement error decreases as the number of remelts increases, suggesting an increase in chemical and phase composition homogeneity. However, X-ray diffraction analysis revealed the presence of multiple phases regardless of the number of melt runs.

Originality/value

For the first time, to the best of the authors’ knowledge, elementally blended NiTi powders were fabricated via LPBF using remelting scanning strategies.

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 1 June 2022

Hua Zhai and Zheng Ma

Effective rail surface defects detection method is the basic guarantee to manufacture high-quality rail. However, the existed visual inspection methods have disadvantages such as…

1005

Abstract

Purpose

Effective rail surface defects detection method is the basic guarantee to manufacture high-quality rail. However, the existed visual inspection methods have disadvantages such as poor ability to locate the rail surface region and high sensitivity to uneven reflection. This study aims to propose a bionic rail surface defect detection method to obtain the high detection accuracy of rail surface defects under uneven reflection environments.

Design/methodology/approach

Through this bionic rail surface defect detection algorithm, the positioning and correction of the rail surface region can be computed from maximum run-length smearing (MRLS) and background difference. A saliency image can be generated to simulate the human visual system through some features including local grayscale, local contrast and edge corner effect. Finally, the meanshift algorithm and adaptive threshold are developed to cluster and segment the saliency image.

Findings

On the constructed rail defect data set, the bionic rail surface defect detection algorithm shows good recognition ability on the surface defects of the rail. Pixel- and defect-level index in the experimental results demonstrate that the detection algorithm is better than three advanced rail defect detection algorithms and five saliency models.

Originality/value

The bionic rail surface defect detection algorithm in the production process is proposed. Particularly, a method based on MRLS is introduced to extract the rail surface region and a multifeature saliency fusion model is presented to identify rail surface defects.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 16 October 2009

62

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 6
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1085

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Content available
Article
Publication date: 1 March 2006

51

Abstract

Details

Industrial Robot: An International Journal, vol. 33 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 25