Search results

1 – 10 of 52
Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

472

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 January 2023

Damira Dairabayeva, Asma Perveen and Didier Talamona

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a…

1020

Abstract

Purpose

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a weak bonding strength between dissimilar materials. Low interfacial bonding strength leads to defects, anisotropy and temperature gradient in materials which negatively impact the mechanical performance of the multi-material prints. The purpose of this study was to assess the performance of different interface geometry designs in terms of the mechanical properties of the specimens.

Design/methodology/approach

Tensile test specimens were printed using: mono-material without a boundary interface, mono-material with the interface geometries (Face-to-face; U-shape; T-shape; Dovetail; Encapsulation; Mechanical interlocking; and Overlap) and multi-material with the interface geometries. The materials chosen with high and low compatibility were Tough polylactic acid (PLA) and TPU.

Findings

The main results of this study indicate that the interface geometries with the mechanical constriction between materials provide better structural integrity to the specimens. Moreover, in the case of the mono-material parts, the most effective interface design was the mechanical interlocking for both Tough PLA and TPU. On the other hand, in the case of multi-material specimens, the encapsulation showed the highest ultimate tensile strength, whereas the overlap and T-shape presented more robust bonding.

Originality/value

This study examines the mechanical performance, particularly tensile strength, strain at break, Young’s modulus and yield strength of different interface designs which were not studied in the previous studies.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2710

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 17 November 2023

Qi Xiao, Weidong Yu, Guangrong Tian and Fangxuan Li

This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.

Abstract

Purpose

This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.

Design/methodology/approach

Chinese wagons' existing maintenance strategy had left a certain safety margin for the characteristics of widely running range, unstable service environment and submission to transportation organization requirements. To reduce maintenance costs, China railway (CR) has attempted to extend the maintenance interval since 2020. The maintenance cycle of C80 series heavy haul wagons is extended by three months (no stable routing) or 50,000 km (regular routing). However, in the meantime, the alarming rate of the running state, a key index to reflect the severe degree of hunting stability, by the train performance detection system (TPDS) for the C80 series heavy haul wagons has increased significantly.

Findings

The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set. Through the maintenance and wayside-detector data, which is divided into three stages, the extension period (three months), the current maintenance period and the previous maintenance period, this method reveals the alarming rate of hunting was correlated with maintenance interval. The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing. This paper also proposes a statistical model to return to the average safety level of the previous maintenance period's baseline through correct alarming thresholds for unplanned corrective maintenance.

Originality/value

The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program. The results are expected to help the railway company make the optimal solution to balance safety and the economy.

Open Access
Article
Publication date: 17 November 2023

Yujie Ren and Hai Chi

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Abstract

Purpose

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Design/methodology/approach

This paper summarizes and analyzes typical faults of the brake controller, and proposes four categories of faults: position sensor faults, microswitch faults, mechanical faults and communication faults. Suggestions and methods for improving the safety of the brake controller are also presented.

Findings

In this paper, a self-judgment and self-learning dynamic calibration method is proposed, which integrates the linear error of the sensor and the manufacturing and assembly errors of the brake controller to solve the output drift. This paper also proposes a logic for diagnosing and handling microswitch faults. Suggestions are proposed for other faults of brake controller.

Originality/value

The methods proposed in this paper can greatly improve the usability of the brake controller and reduce the failure rate.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 2 November 2023

FengShou Liu, Guang Yang, Zhaoyang Chen, Yinhua Zhang and Qingyue Zhou

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail…

Abstract

Purpose

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail technology of high-speed railway.

Design/methodology/approach

This study reviews the evolution of high-speed rail standards in China, comparing their chemical composition, mechanical attributes and geometric specifications with EN standards. It delves into the status of rail production technology, shifts in key performance indicators and the quality characteristics of rails. The analysis further examines the interplay between wheels and rails, the implementation of grinding technology and the techniques for inspecting rail service conditions. It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem. The paper concludes with an insightful prognosis of high-speed railway technology development in China.

Findings

The rail standards of high-speed railway in China are scientific and advanced, highly operational and in line with international standards. The quality and performance of rail in China have reached the world’s advanced level. The 60N profile guarantees the operation quality of wheel–rail interaction effectively. The rail grinding technology system scientifically guarantees the long-term good service performance of the rail. The rail service state detection technology is scientific and efficient. The rail technology will take “more intelligent” and “higher speed” as the development direction to meet the future needs of high-speed railway in China.

Originality/value

The development direction of rail technology for high-speed railway in China is defined, which will promote the continuous innovation and breakthrough of rail technology.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 1 January 2024

Bas Becker and Carel Roessingh

Multisited ethnography has primarily been portrayed as a challenge for the following field-worker, with the researcher taking the central role and neglecting research participants…

Abstract

Purpose

Multisited ethnography has primarily been portrayed as a challenge for the following field-worker, with the researcher taking the central role and neglecting research participants also experiencing a multisited nature of their work. The authors argue that literature on multisited ethnography merely discusses multisitedness as a methodological theme. In correspondence, the authors propose to think of multisitedness not just as a methodological theme but also as an empirical theme.

Design/methodology/approach

The authors contend etic and emic perspectives to address multisitedness empirically, which enables researchers to compare and contrast the multisited topic of inquiry in academic “outsider” terms with the etic analysis and considering the perspective of the research participants' multisited experiences using the emic perspective. To show the fruitfulness of discussing multisitedness using the complementary etic and emic analysis, the authors present the example of Mennonite entrepreneurial activities in Belize, a heterogeneous group of migrants that established themselves as successful traders and entrepreneurs.

Findings

Through an etic multisited ethnographic perspective, the authors compare and contrast four communities of Mennonites in terms of their entrepreneurial activities, technology and energy use. Through an emic perspective, the authors demonstrate how Mennonites, while preferring an in-group focus, navigate their multisited entrepreneurial activities, which require interaction with the outside world.

Originality/value

The authors highlight the value of combining etic–emic reflections to acknowledge and include the multisited nature of many social phenomena as experienced by the research participants.

Details

Journal of Organizational Ethnography, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6749

Keywords

Access

Only Open Access

Year

Last 6 months (52)

Content type

1 – 10 of 52