Search results

1 – 10 of 50
Article
Publication date: 7 February 2024

Nancy Sobh, Nagla Elshemy, Sahar Nassar and Mona Ali

Due to herbs and plants’ therapeutic properties and simplicity of availability in nature, humans have used them to treat a variety of maladies and diseases since ancient times…

Abstract

Purpose

Due to herbs and plants’ therapeutic properties and simplicity of availability in nature, humans have used them to treat a variety of maladies and diseases since ancient times. Later, as technology advanced, these plants and herbs gained significant relevance in some industries due to their suitable chemical composition, abundant availability and ease of access. Aegle marmelos is a species of plant that may be found in nature. Yet, little or very little literature was located on the coloration behavior of this plant’s leaves. This study aims to focus on the effect of different parameters on the extraction of colorant from Aegle marmelos leaves.

Design/methodology/approach

Some factors that affected on the extraction processes were examined and found to have significant impacts on the textile dyeing such as the initial dye concentration, extracted temperature, extracted bath pH and extracted time were all changed to see how they affected color extraction. The authors report a direct comparison between three heating methods, namely, microwave irradiation (MWI), ultrasonic waves (USW) and conventional heating (CH). The two kinetic models have been designed (pseudo-first and pseudo-second orders) in the context of these experiments to investigate the mechanism of the dyeing processes for fabrics under study. Also, the experimental data were analyzed according to the Langmuir and Freundlich isotherms.

Findings

From the result, it was discovered these characteristics were found to have a substantial effect on extraction efficiency. Temperature 90°C and 80°C when using CH and USW, respectively, while at 90% watt when using MWI, period 120 min when using CH as well as USW waves, while 40 min when using MWI, and pH 4, 5 and 10 for polyamide, wool and cotton, respectively, were the optimal extraction conditions. Also, the authors can say that wool gives a higher absorption than the other fabric. Additionally, MWI provided the best color strength (K/S) value, and homogeneity, at low temperatures reducing the energy and time consumed. The coloring follows the order: MWI > USW > CH. The adsorption isotherm of wool could be well fitted by Freundlich isotherm when applying CH and USW as a heating source, while it is well fitted by the Langmuir equation in the case of MWI. In the study, it was observed that the pseudo-first-order kinetic model fits better the experimental results of CH with a constant rate K1 = −0.000171417 mg/g.min, while the pseudo-second-order kinetic model fits better the experimental results of absorption of both MWI (K2 = 38.14022572 mg/g.min) and USW (K2 = 12.45343554 mg/g.min).

Research limitations/implications

There is no research limitation for this work. Dye was extracted from Aegle marmelos leaves by applying three different heating sources (MWI, ultrasonic waves [USWW] and CH).

Practical implications

This work has practical applications for the textile industry. It is concluded that using Aegle marmelose leaves can be a possible alternative to extract dye from natural resource by applying new technology to save energy and time and can make the process greener.

Social implications

Socially, it has a good impact on the ecosystem and global community because the extracted dye does not contain any carcinogenic materials.

Originality/value

The work is original and contains value-added products for the textile industry and other confederate fields.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 April 2024

H.G. Di, Pingbao Xu, Quanmei Gong, Huiji Guo and Guangbei Su

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Abstract

Purpose

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Design/methodology/approach

First, an improved 2.5D finite-element-method-perfect-matching-layer (FEM-PML) model is proposed. The Galerkin method is used to derive the finite element expression in the ub-pl-pg format for unsaturated soil. Unlike the ub-v-w format, which has nine degrees of freedom per node, the ub-pl-pg format has only five degrees of freedom per node; this significantly enhances the calculation efficiency. The stretching function of the PML is adopted to handle the unlimited boundary domain. Additionally, the 2.5D FEM-PML model couples the tunnel, vehicle and track structures. Next, the spatial variability of the soil parameters is simulated by random fields using the Monte Carlo method. By incorporating random fields of soil parameters into the 2.5D FEM-PML model, the effect of soil spatial variability on ground vibrations is demonstrated using a case study.

Findings

The spatial variability of the soil parameters primarily affected the vibration acceleration amplitude but had a minor effect on its spatial distribution and attenuation over time. In addition, ground vibration acceleration was more affected by the spatial variability of the soil bulk modulus of compressibility than by that of saturation.

Originality/value

Using the 2.5D FEM-PML model in the ub-pl-pg format of unsaturated soil enhances the computational efficiency. On this basis, with the random fields established by Monte Carlo simulation, the model can calculate the reliability of soil dynamics, which was rarely considered by previous models.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 January 2024

Spencer Ii Ern Teo, Yuhan Zhou and Justin Ker-Wei Yeoh

Network coverage is crucial for the adoption of advanced Smart Home applications. The commonly used log-based path loss model is not able to accurately estimate WiFi signal…

Abstract

Purpose

Network coverage is crucial for the adoption of advanced Smart Home applications. The commonly used log-based path loss model is not able to accurately estimate WiFi signal strength in different houses, as it does not fully consider the impact of building morphology. To better describe the propagation of WiFi signals and achieve higher estimation accuracy, this paper studies the basic building morphology characteristics of houses.

Design/methodology/approach

A new path loss model based on a decision tree was proposed after measuring the WiFi signal strength passing through multiple housing units. Three types of regression models were tested and compared.

Findings

The findings demonstrate that the log-based path loss model fits small houses well, while the newly proposed nonlinear path loss model performs better in large houses (area larger than 125 m2 and area-to-perimeter ratio larger than 2.5). The impact of building design on path loss has been proven and specifically quantified in the model.

Originality/value

Proposed an improved model to estimate indoor network coverage. Quantify the impacts of building morphology on indoor WiFi signal strength. Improve WiFi signal strength estimation to support Smart Home applications.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 January 2024

Divya Shree M. and Srinivasa Rao Inabathini

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics…

Abstract

Purpose

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics on a low-loss Taconic substrate and analyze using the coupled theory of resonators for UWB range covering L, S, C and X bands for radars, global positioning system (GPS) and satellite communication applications.

Design/methodology/approach

The filter is designed with a bent coupled transmission line on the top copper layer. Defected ground structures (DGSs) like complementary split ring resonators (CSRRs), V-shaped resonators, rectangular slots and quad circle slots (positioned inwards and outwards) are etched in the ground layer of the filter. The circular orientation of V-shaped resonators adds compactness when linearly placed. By arranging the quad circle slots outwards and inwards at the corner and core of the ground plane, respectively, two filters (Filters I and II) are designed, fabricated and measured. These two filters feature a quasi-elliptic response with transmission zeros (TZs) on either side of the bandpass response, making it highly selective and reflection poles (RPs), resulting in a low-loss filter response. The transmission line model and coupled line theory are implemented to analyze the proposed filters.

Findings

Two filters by placing the quad circle slots outwards (Filter I) and inwards (Filter II) were designed, fabricated and tested. The fabricated model (Filter I) provides transmission with a maximum insertion loss of 2.65 dB from 1.5 GHz to 9.2 GHz. Four TZs and five RPs are observed in the frequency response. The lower and upper stopband band width (BW) of the measured Filter I are 1.2 GHz and 5.5 GHz of upper stopband BW with rejection level greater than 10 dB, respectively. Filter II (inward quad circle slots) operates from 1.4 GHz to 9.05 GHz with 1.65 dB maximum insertion loss inside the passband with four TZs and four RPs, which, in turn, enhances the filter characteristics in terms of selectivity, flatness and stopband. Moreover, 1 GHz BW of lower and upper stopbands are observed. Thus, the fabricated filters (Filters I and II) are therefore evaluated, and the outcomes show good agreement with the electromagnetic simulation response.

Research limitations/implications

The limitation of this work is the back radiation caused by DGS, which can be eradicated by placing the filter in the cavity and retaining its performance.

Practical implications

The proposed UWB BPFs with novel resonators find their role in the UWB range covering L, S, C and X bands for radars, GPS and satellite communication applications.

Originality/value

To the best of the authors’ knowledge, for the first time, the authors develop a compact UWB BPFs (Filters I and II) with BW greater than 7.5 GHz by combining reformed coupled lines and DGS resonators (CSRRs, V-shaped resonators [modified hairpin resonators], rectangular slots and quad circle slots [inwards and outwards]) for radars, GPS and satellite communication applications.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 January 2024

Juelin Leng, Quan Xu, Tiantian Liu, Yang Yang and Peng Zheng

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Abstract

Purpose

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Design/methodology/approach

In this paper, the authors present an automatic approach for mesh sizing field generation. First, a source point extraction algorithm is applied to capture curvature and proximity features of CAD models. Second, according to the distribution of feature source points, an octree background mesh is constructed for storing element size value. Third, mesh size value on each node of background mesh is calculated by interpolating the local feature size of the nearby source points, and then, an initial mesh sizing field is obtained. Finally, a theoretically guaranteed smoothing algorithm is developed to restrict the gradient of the mesh sizing field.

Findings

To achieve high performance, the proposed approach has been implemented in multithreaded parallel using OpenMP. Numerical results demonstrate that the proposed approach is remarkably efficient to construct reasonable mesh sizing field for complicated CAD models and applicable for generating geometrically adaptive triangle/tetrahedral meshes. Moreover, since the mesh sizing field is defined on an octree background mesh, high-efficiency query of local size value could be achieved in the following mesh generation procedure.

Originality/value

How to determine a reasonable mesh size for complicated CAD models is often a bottleneck of mesh generation. For the complicated models with thousands or even ten thousands of geometric entities, it is time-consuming to construct an appropriate mesh sizing field for generating high-quality mesh. A parallel algorithm of mesh sizing field generation with low computational complexity is presented in this paper, and its usability and efficiency have been verified.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

18

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 22 April 2024

Sami Barmada, Nunzia Fontana, Leonardo Sandrolini and Mattia Simonazzi

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to…

46

Abstract

Purpose

The purpose of this paper is to gain a better understanding on how metasurfaces behave, in terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for specific applications.

Design/methodology/approach

The methodology used is both theoretical and numerical; it is based on circuit theory and on an optimization procedure.

Findings

The results show that when the knowledge of the current in each unit cell of a metasurface is needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for the termination of a metasurface, with application-driven goals, is given.

Originality/value

This paper investigates the distribution of the currents in a 2D metamaterial realized with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated, and the effects of the approximations they introduce on the current values are shown and discussed. Furthermore, proper terminations of the resonators on the boundaries have been investigated by implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent on the specific applications they are designed for. A design strategy, with lumped impedance termination, is here proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 November 2023

Serap Kiriş and Muharrem Karaaslan

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to…

Abstract

Purpose

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to provide space gain on the aircraft.

Design/methodology/approach

To create an easy-to-produce MIMO, a two-storied structure consisting of a reflector and a top antenna was designed. The dimensions of the reflector were prevented to get smaller to supply easy production. The unit cell nearly with the same dimensions of a lower frequency was protected through the original cell design. The co-planar structure with the use of a via connection was modified and a structure was achieved with no need to via for easy production, too. Finally, the antennas were placed side by side and the distance between them was optimized to achieve a MIMO operation.

Findings

As a result, an easy-to-produce, compact and successful radio altimeter antenna was obtained with high antenna parameters such as 10.14 dBi gain and 10.55 dBi directivity, and the conical pattern along with proper MIMO features, through original reflector surface and top antenna system.

Originality/value

Since radio altimeter antennas require high radiation properties, the microstrip antenna structure is generally used in literature. This paper contributes by presenting the radio altimeter application with antenna-reflective structure participation. The technical solutions were developed during the design, focusing on an easy manufacturing process for both the reflective surface and the upper antenna. Also, the combination of International Telecommunication Union’s recommended features that require high antenna properties was achieved, which is challenging to reach. In addition, by operating the antenna as a successful MIMO, two goals of easy production and space gain on aircraft have been attained at the same time.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 February 2024

Aleena Swetapadma, Tishya Manna and Maryam Samami

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the…

Abstract

Purpose

A novel method has been proposed to reduce the false alarm rate of arrhythmia patients regarding life-threatening conditions in the intensive care unit. In this purpose, the atrial blood pressure, photoplethysmogram (PLETH), electrocardiogram (ECG) and respiratory (RESP) signals are considered as input signals.

Design/methodology/approach

Three machine learning approaches feed-forward artificial neural network (ANN), ensemble learning method and k-nearest neighbors searching methods are used to detect the false alarm. The proposed method has been implemented using Arduino and MATLAB/SIMULINK for real-time ICU-arrhythmia patients' monitoring data.

Findings

The proposed method detects the false alarm with an accuracy of 99.4 per cent during asystole, 100 per cent during ventricular flutter, 98.5 per cent during ventricular tachycardia, 99.6 per cent during bradycardia and 100 per cent during tachycardia. The proposed framework is adaptive in many scenarios, easy to implement, computationally friendly and highly accurate and robust with overfitting issue.

Originality/value

As ECG signals consisting with PQRST wave, any deviation from the normal pattern may signify some alarming conditions. These deviations can be utilized as input to classifiers for the detection of false alarms; hence, there is no need for other feature extraction techniques. Feed-forward ANN with the Lavenberg–Marquardt algorithm has shown higher rate of convergence than other neural network algorithms which helps provide better accuracy with no overfitting.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Access

Year

Last 6 months (50)

Content type

Earlycite article (50)
1 – 10 of 50