Search results

1 – 10 of over 41000
Article
Publication date: 20 June 2017

N. Adhikary and B. Gurumoorthy

This paper aims to propose an automatic and direct method to manipulate global parameters of the object for prototyping and simulation, given an STL mesh model of a thin-walled

Abstract

Purpose

This paper aims to propose an automatic and direct method to manipulate global parameters of the object for prototyping and simulation, given an STL mesh model of a thin-walled object. Proposed method is useful in rapid prototyping, where changing the global parameters such as thickness, scaling local features or draft of walls of an STL mesh is often required. Presently, user needs to iterate over the cycle of modification of the computer-aided design (CAD) model and tessellating it to change the global parameters. The proposed algorithm eliminates the need for CAD model while manipulating those global properties, as it works directly with the mesh model.

Design/methodology/approach

Proposed algorithm automatically identifies walls and its thickness, and then, it extracts mid-surface from each wall. Global parameters are then modified by using these mid-surfaces.

Findings

Mesh directly modified and the mesh obtained by tessellating modified CAD model has same global properties; proposed method can also allow multiple parameters to be modified at the same time.

Research limitations/implications

Input STL model is assumed to be error-free, where models containing errors like self-intersection will lead to incorrect mid-surfaces. Present algorithm assumes that the mid-surface represent of the input STL model is a manifold surface.

Originality/value

A novel algorithm of directly manipulating global parameters of a thin-walled object in its STL mesh model is proposed. The paper also presents a novel method of extracting mid-surface representation from a thin-wall STL mesh.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 2014

Tareq Salameh and Bengt Sunden

– The aim of this paper is to study two-dimensional numerical simulations of the flow and temperature fields inside the bend (turn) part of a U-duct.

Abstract

Purpose

The aim of this paper is to study two-dimensional numerical simulations of the flow and temperature fields inside the bend (turn) part of a U-duct.

Design/methodology/approach

Several turbulence models based on two and five equations were used to solve the momentum and energy equations inside the bend (turn) part of the U-duct. For two-equation models, both the renormalization group and realizable k-ɛ turbulence models were implemented. The five-equation model used is a Reynolds stress model with different wall boundary conditions. Standard, non-equilibrium and enhanced wall functions were used in parallel with the two- and five-equation models to treat the turbulent flow near the duct walls.

Findings

Several turbulence models were used to simulate the flow and temperature fields along the bend part of a U-duct with different inlet and thermal boundary conditions. The numerical results indicate that the renormalization and realizable k-ɛ turbulence models with standard wall function treatment gave the best results when compared with experimental data obtained for similar conditions.

Research limitations/implications

For heat transfer analysis, two different thermal boundary conditions, i.e. constant wall temperature and constant heat flux at the wall are implemented. The results are calculated for Reynolds number equal 20,000.

Practical implications

The results can be used in designing heat exchangers, piping and duct systems, and internal passage cooling of gas turbine blades.

Originality/value

The numerical results obtained here concentrate on the detailed investigation of flow and temperature field at the outer wall of the bend part. Different boundary conditions at the inlet and the outer bend walls of the U-duct were applied to study how these boundary conditions affect the flow and temperature fields.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 August 2023

Mohammadsadegh Pahlavanzadeh, Krzysztof Rusin and Wlodzimierz Wróblewski

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of…

Abstract

Purpose

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of the flow through the gap, which forms a minichannel with variable cross sections and rotating walls, makes it a complex problem and, therefore, worth discussing in more detail.

Design/methodology/approach

Two roughness models were examined, the first one was based on the wall function modification by application of the shift in the dimensionless velocity profile, and the second one was based on the correction of turbulence parameters at the wall, proposed by Aupoix. Due to the lack of data to validate that specific case, the approach to deal with was selected after a systematic study of reported test cases. It started with a zero-pressure-gradient boundary layer in the flow over a flat plate, continued with flow through minichannels with stationary walls, and finally, focused on the flow between corotating discs, pertaining each time to smooth and rough surfaces.

Findings

The limitations of the roughness models were highlighted, which make the models not reliable in the application to minichannel flows. It concerns turbulence models, near-wall discretization and roughness approaches. Aupoix’s method to account for roughness was selected, and the influence of minichannel height, mass flow rate, fluid properties and roughness height on the velocity profile between corotating discs in both smooth and rough cases was discussed.

Originality/value

The originality of this study is the evaluation and validation of different methods to account for the roughness in rotating mini channels, where the protrusions can cover a substantial part of the channel. Flow behavior and performance of different turbulence models were analyzed as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2009

Mohamed Omri and Nicolas Galanis

The purpose of this paper is to evaluate the capacity of two equation turbulence models to reproduce mean and fluctuating quantities in the case of both natural convection and…

Abstract

Purpose

The purpose of this paper is to evaluate the capacity of two equation turbulence models to reproduce mean and fluctuating quantities in the case of both natural convection and isothermal flows.

Design/methodology/approach

Numerical predictions of mean velocity profiles, air and wall temperatures as well as turbulent kinetic energy by three different two equation models (standard kε, renormalisation group kε and shear‐stress transport‐kω) are compared with corresponding experimental values.

Findings

The prediction of mean velocities and temperatures is in all cases satisfactory. On the other hand, the prediction of turbulent quantities is less precise.

Originality/value

The three models under consideration in this paper can be used for engineering applications such as HVAC calculations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1993

M.R. CASEY, L. KONG, C. TAYLOR and J.O. MEDWELL

A finite element based numerical model is employed to obtain isothermal and heat transfer predictions for the case of turbulent flow with a decaying swirl component in a…

Abstract

A finite element based numerical model is employed to obtain isothermal and heat transfer predictions for the case of turbulent flow with a decaying swirl component in a stationary circular pipe. An assessment is made on the quality of predictions based on the choice of turbulence modelling technique adopted to close the governing equations. In the present work the one‐equation, two‐equation and algebraic Reynolds stress turbulence models are employed. For the confined flow problem investigated, accurate prediction of the near‐wall conditions is essential. This is particularly the case for confined swirling flow where the variation of variables near the wall is often somewhat greater than encountered in pure axial flow. A finite element based near‐wall model is employed as an alternative to conventional techniques such as the use of the standard logarithmic functions. Of significance is the fact that flow predictions based on the use of the unidimensional finite element techniques are closer to experiment compared to the wall function based solutions for a given turbulence model. As expected, improvements in the flow predictions directly contribute to improved simulation of the thermal aspects of the problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 May 2009

Junye Wang and Geoffrey H. Priestman

The purpose of this paper is to simulate the behaviour of the symmetrical turn‐up vortex amplifier (STuVA) to obtain insight into its maximum through‐flow operation within the…

Abstract

Purpose

The purpose of this paper is to simulate the behaviour of the symmetrical turn‐up vortex amplifier (STuVA) to obtain insight into its maximum through‐flow operation within the eight‐port STuVA, and understand the relation between its design parameters and flow characteristics. Furthermore, it is to test the performance of different turbulent models and near‐wall models using the same grid, the same numerical methods and the same computational fluid dynamics code under multiple impingement conditions.

Design/methodology/approach

Three turbulence models, the standard k‐ε, the renormalization group (RNG) k‐ε model and the Reynolds stress model (RSM), and three near‐wall models have been used to simulate the confined incompressible turbulent flow in an eight‐port STuVA using unstructured meshes. The STuVA is a special symmetrical design of turn‐up vortex amplifier, and the simulation focused on its extreme operation in the maximum flow state with no swirling. The predictions were compared with basic pressure‐drop flow rate measurements made using air at ambient conditions. The effect of different combinations of turbulence and near‐wall models was evaluated.

Findings

The RSM gave predictions slightly closer to the experimental data than the other models, although the RNG k‐ε model predicted nearly as accurately as the RSM. They both improved errors by about 3 per cent compared to the standard k‐ε model but took a long time for convergence. The modelling of complex flows depends not only on the turbulence model but also on the near‐wall treatments and computational economy. In this study a good combination was the RSM, the two layer wall model and the higher order discretization scheme, which improved accuracy by more than 10 per cent compared to the standard k‐ε model, the standard wall function and first order upwind.

Research limitation/implications

The results of this paper are valid for the global pressure drop flow rate. It should be desirable to compare some local information with the experiment.

Originality/value

This paper provides insight into the maximum through‐flow operation within the eight‐port STuVA to understand the relation between its design parameters and flow characteristics and study the performance of turbulence and near wall models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Zhitao Yan, Yongli Zhong, William E. Lin, Eric Savory and Yi You

This paper examines various turbulence models for numerical simulation of a steady, two-dimensional (2-D) plane wall jet without co-flow using the commercial CFD software (ANSYS…

Abstract

Purpose

This paper examines various turbulence models for numerical simulation of a steady, two-dimensional (2-D) plane wall jet without co-flow using the commercial CFD software (ANSYS FLUENT 14.5). The purpose of this paper is to decide the most suitable and most economical method for steady, 2-D plane wall jet simulation.

Design/methodology/approach

Seven Reynolds-averaged Navier–Stokes (RANS) turbulence models were evaluated with respect to typical jet scaling parameters such as the jet half-height and the decay of maximum jet velocity, as well as coefficients from the law of the wall and for skin friction. Then, a plane wall jet generating from a rectangular slot of 1:6 aspect ratio located adjacent to the wall was investigated in a three-dimensional (3-D) model using large eddy simulation (LES) and the Stress-omega Reynolds stress model (SWRSM), with the results compared to experimental measurements.

Findings

The comparisons of these simulated flow characteristics indicated that the SWRSM was the best of the seven RANS models for simulating the turbulent wall jet. When scaled with outer variables, LES and SWRSM gave generally indistinguishable mean velocity profiles. However, SWRSM performed better for near-wall mean velocity profiles when scaled with inner variables. In general, the results show that LES performed reasonably well when predicting the Reynolds stresses.

Originality/value

The main contribution of this article is in determining the capabilities of different RANS turbulence closures and LES for the prediction of the 2-D steady wall jet flow to identify the best modelling approach.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 April 2024

Ghada Karaki, Rami A. Hawileh and M.Z. Naser

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete…

Abstract

Purpose

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete (RC) walls.

Design/methodology/approach

The study performs an one-at-a-time (OAT) sensitivity analysis to assess the impact of variables defining the constitutive and parametric fire models on the wall's thermal response. Moreover, it extends the sensitivity analysis to a variance-based analysis to assess the effect of constitutive model type, fire model type and constitutive model uncertainty on the RC wall's thermal response variance. The study determines the wall’s thermal behaviour reliability considering the different constitutive models and their uncertainty.

Findings

It is found that the impact of the variability in concrete’s conductivity is determined by its temperature-dependent model, which differs for NSC and HSC. Therefore, more testing and improving material modelling are needed. Furthermore, the heating rate of the fire scenario is the dominant factor in deciding fire-resistance performance because it is a causal factor for spalling in HSC walls. And finally the reliability of wall's performance decreased sharply for HSC walls due to the expected spalling of the concrete and loss of cross-section integrity.

Originality/value

Limited studies in the current open literature quantified the impact of constitutive models on the behaviour of RC walls. No studies have examined the effect of material models' uncertainty on wall’s response reliability under fire. Furthermore, the study's results contribute to the ongoing attempts to shape performance-based structural fire engineering.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 April 2014

Zhiwei Li, Wenxin Huai, Zhonghua Yang, Zhongdong Qian and Yuhong Zeng

A radial offset jet has the flow characteristics of a radial jet and an offset jet, which are encountered in many engineering applications. The purpose of this paper is to study…

169

Abstract

Purpose

A radial offset jet has the flow characteristics of a radial jet and an offset jet, which are encountered in many engineering applications. The purpose of this paper is to study the dynamics and mass transfer characteristics of the radial offset jet with an offset ratio 6, 8 and 12.

Design/methodology/approach

Three turbulence models, namely the SST k-? model, detached eddy simulation model, and improved delayed detached eddy simulation (IDDES), were applied to the radial offset jet with an offset ratio eight and their results were compared with experimental results. The contrasting results, such as the distributions of mean and turbulent velocity and pressure, show that the IDDES model was the best model in simulating the radial offset jet. The results of the IDDES were analyzed, including the Reynolds stress, turbulent kinetic energy, triple-velocity correlations, vertical structure and the tracer concentration distribution.

Findings

In the axisymmetric plane, Reynolds stresses increase to reach a maximum at the location where the jet central line starts to be bent rapidly, and then decrease with increasing distance in the radial direction. The shear layer vortices, which arise from the Kelvin-Helmholtz instability near the jet exit, become larger scale results in the entrainment and vortex pairing, and breakdown when the jet approaches the wall. Near the wall, the vortex swirling direction is different at both front and back of attachment point. In the wall-jet region, the concentration distributions present self-similarity while it keeps constant below the jet in the recirculation region.

Research limitations/implications

The radial offset jet with other offset ratio and exit angle is not considered in this paper and should be investigated.

Originality/value

The results obtained in this paper will provide guidance for studying similar flow and a better understanding of the radial offset jet.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 41000