Search results

1 – 2 of 2
Article
Publication date: 20 April 2022

Walaa M. Abd El-Gawad and Wael Mohamed Abdelmaksoud

This study aims to investigate the possibility of synthesizing cobalt doped willemite ceramic blue pigment by using Egyptian white sand as environmental and economical raw…

Abstract

Purpose

This study aims to investigate the possibility of synthesizing cobalt doped willemite ceramic blue pigment by using Egyptian white sand as environmental and economical raw material for multi-applications in coatings and inks.

Design/methodology/approach

After the synthesis process, the prepared blue pigment was characterized via X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis technique. Then the blue pigment was integrated into both coating and ink formulations. The effect of the prepared multifunctional coatings on corrosion resistance and thermal stability was evaluated using different standard tests. Also, the effect of inclusion of blue pigment in flexographic printing ink formulation was done.

Findings

The results showed that the coating containing the cobalt doped willemite blue pigment offered good anticorrosive performance and high thermal stability. Additionally, the presented results revealed that integration of the blue pigment in flexographic printing ink formulation enhanced fineness, gloss, viscosity and color more than the commercial one “FX 430–201.”

Originality/value

In conclusion, relied on the eco-friendly principle which can be regarded as an economic and green strategy, it can be obtained that this new pigment can provide good multifunctions such as corrosion resistance and thermal stability in coatings and good fineness, gloss, viscosity and color in inks which can enable them to be widely applied in different industries.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 May 2022

Nivin M. Ahmed, Mostafa G. Mohamed and Walaa M. Abd El-Gawad

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite…

Abstract

Purpose

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite materials that refer to multilayered structures with a core totally surrounded by shell(s) (onion-like structure). These new structures can offer an advantage of applying new adjustable parameters like shape, stoichiometry and chemical ordering, in addition to the opportunity of tailoring more complexed structures for different applications. Recently it was found that these structures can be tuned and taken for more advanced path with novel structures formed of core surrounded by multishells. The purpose of this study is to study the effect of the new anticorrosive pigments with its mutual shells and how each shell affects the performance of the pigment in protecting the metal and which shell will be more relevant in its effect.

Design/methodology/approach

The prepared pigments were characterized using X-ray fluorescence, X-ray diffraction, TEM and SEM/EDX to prove their core-shell structure, and then they were integrated in coating formulations to evaluate their anticorrosive activity using immersion test and electrochemical impedance spectroscopy (EIS).

Findings

The results showed that the prepared core-shell pigments possess a lot of unique characteristics and can offer improved anticorrosive performance in the generated coatings.

Originality/value

Core-mutual shells structured pigments were prepared for improving the corrosion resistivity of the organic coatings as a new trend in anticorrosive pigments.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last 12 months (2)

Content type

Article (2)
1 – 2 of 2