Search results

1 – 10 of 405
Article
Publication date: 18 September 2009

Talaat S. El Danaf and Faisal E.I. Abdel Alaal

The purpose of this paper is to propose a non‐polynomial spline‐based method to obtain numerical solutions of a dissipative wave equation. Applying the Von Neumann stability

322

Abstract

Purpose

The purpose of this paper is to propose a non‐polynomial spline‐based method to obtain numerical solutions of a dissipative wave equation. Applying the Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the applicability and the accuracy of the proposed method. The obtained numerical results reveal that our proposed method maintains good accuracy.

Design/methodology/approach

A non‐polynomial spline is proposed based on the dissipative wave equation, which gives nonlinear system of algebraic equations; by solving these equations, the numerical solution is found.

Findings

It is found that the method gives more accurate numerical results for such nonlinear partial differential equations. The stability is good.

Research limitations/implications

Any nonlinear or linear partial differential equation can be solved by such method.

Practical implications

We compare between the numerical and analytic solutions of the dissipative wave equation, also the error norms which were small.

Originality/value

This paper presents a new method to solve such problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2019

Omar Ramadan

The purpose of this paper is to present efficient and stable generalized auxiliary differential equation finite difference time domain (G-ADE-FDTD) implementation of graphene…

Abstract

Purpose

The purpose of this paper is to present efficient and stable generalized auxiliary differential equation finite difference time domain (G-ADE-FDTD) implementation of graphene dispersion.

Design/methodology/approach

A generalized dispersive model is used for describing the graphene’s intraband and interband conductivities in the terahertz and infrared frequencies. In addition, the von Neumann method combined with the Routh-Hurwitz criterion are used for studying the stability of the given implementation.

Findings

The presented G-ADE-FDTD implementation allows modeling graphene’s dispersion using the minimal number of additional auxiliary variables, which will reduce both the CPU time and memory storage requirements. In addition, the stability of the implementation retains the standard non-dispersive Courant–Friedrichs–Lewy (CFL) constraint.

Practical implications

The given implementation is conveniently applicable for most commonly used dispersive models, such as Debye, Lorentz, complex-conjugate pole residue, etc.

Originality/value

The presented G-ADE-FDTD implementation not only unifies the implementation of both graphene’s intraband and interband conductivities, with the minimal computational requirements but also retains the standard non-dispersive CFL time step stability constraint.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 July 2021

A. A. Alanazi, Sultan Z. Alamri, S. Shafie and Shazirawati Mohd Puzi

The purpose of this paper is to obtain the nonlinear Schrodinger equation (NLSE) numerical solutions in the presence of the first-order chromatic dispersion using a second-order…

Abstract

Purpose

The purpose of this paper is to obtain the nonlinear Schrodinger equation (NLSE) numerical solutions in the presence of the first-order chromatic dispersion using a second-order, unconditionally stable, implicit finite difference method. In addition, stability and accuracy are proved for the resulting scheme.

Design/methodology/approach

The conserved quantities such as mass, momentum and energy are calculated for the system governed by the NLSE. Moreover, the robustness of the scheme is confirmed by conducting various numerical tests using the Crank-Nicolson method on different cases of solitons to discuss the effects of the factor considered on solitons properties and on conserved quantities.

Findings

The Crank-Nicolson scheme has been derived to solve the NLSE for optical fibers in the presence of the wave packet drift effects. It has been founded that the numerical scheme is second-order in time and space and unconditionally stable by using von-Neumann stability analysis. The effect of the parameters considered in the study is displayed in the case of one, two and three solitons. It was noted that the reliance of NLSE numeric solutions properties on coefficients of wave packets drift, dispersions and Kerr nonlinearity play an important control not only the stable and unstable regime but also the energy, momentum conservation laws. Accordingly, by comparing our numerical results in this study with the previous work, it was recognized that the obtained results are the generalized formularization of these work. Also, it was distinguished that our new data are regarding to the new communications modes that depend on the dispersion, wave packets drift and nonlinearity coefficients.

Originality/value

The present study uses the first-order chromatic. Also, it highlights the relationship between the parameters of dispersion, nonlinearity and optical wave properties. The study further reports the effect of wave packet drift, dispersions and Kerr nonlinearity play an important control not only the stable and unstable regime but also the energy, momentum conservation laws.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 May 2021

M.J. Huntul and Mohammad Tamsir

The inverse problem of identifying the time-dependent potential coefficient along with the temperature in the fourth-order Boussinesq–Love equation (BLE) with initial and boundary…

Abstract

Purpose

The inverse problem of identifying the time-dependent potential coefficient along with the temperature in the fourth-order Boussinesq–Love equation (BLE) with initial and boundary conditions supplemented by mass measurement is, for the first time, numerically investigated. From the literature, the authors already know that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the input data.

Design/methodology/approach

For the numerical discretization, the authors apply the Crank–Nicolson finite difference method along with the Tikhonov regularization for finding a stable and accurate approximate solution. The resulting nonlinear minimization problem is solved using the MATLAB routine lsqnonlin. Both exact and numerically simulated noisy input data are inverted.

Findings

The present computational results demonstrate that obtained solutions are stable and accurate.

Originality/value

The inverse problem presented in this paper was already showed to be locally uniquely solvable, but no numerical identification has been studied yet. Therefore, the main aim of the present work is to undertake the numerical realization. The von Neumann stability analysis is also discussed.

Article
Publication date: 1 May 2001

M.F. Carfora

A semi‐implicit semi‐Lagrangian mixed finite‐difference finite‐volume model for the shallow water equations on a rotating sphere is considered. The main features of the model are…

Abstract

A semi‐implicit semi‐Lagrangian mixed finite‐difference finite‐volume model for the shallow water equations on a rotating sphere is considered. The main features of the model are the finite‐volume approach for the continuity equation and the vectorial treatment of the momentum equation. Pressure and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi‐implicitly. Discretization of this model led to the introducion, in a previous paper, of a splitting technique which highly reduces the computational effort for the numerical solution. In this paper we solve the full set of equations, without splitting, introducing an ad hoc algorithm. A von Neumann stability analysis of this scheme is performed to establish the unconditional stability of the new proposed method. Finally, we compare the efficiency of the two approaches by numerical experiments on a standard test problem. Results show that, due to the devised algorithm, the solution of the full system of equations is much more accurate while slightly increasing the computational cost.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2007

Mehdi Dehghan

The diffusion‐advection phenomena occur in many physical situations such as, the transport of heat in fluids, flow through porous media, the spread of contaminants in fluids and…

Abstract

Purpose

The diffusion‐advection phenomena occur in many physical situations such as, the transport of heat in fluids, flow through porous media, the spread of contaminants in fluids and as well as in many other branches of science and engineering. So it is essential to approximate the solution of these kinds of partial differential equations numerically in order to investigate the prediction of the mathematical models, as the exact solutions are usually unavailable.

Design/methodology/approach

The difficulties arising in numerical solutions of the transport equation are well known. Hence, the study of transport equation continues to be an active field of research. A number of mathematicians have developed the method of time‐splitting to divide complicated time‐dependent partial differential equations into sets of simpler equations which could then be solved separately by numerical means over fractions of a time‐step. For example, they split large multi‐dimensional equations into a number of simpler one‐dimensional equations each solved separately over a fraction of the time‐step in the so‐called locally one‐dimensional (LOD) method. In the same way, the time‐splitting process can be used to subdivide an equation incorporating several physical processes into a number of simpler equations involving individual physical processes. Thus, instead of applying the one‐dimensional advection‐diffusion equation over one time‐step, it may be split into the pure advection equation and the pure diffusion equation each to be applied over half a time‐step. Known accurate computational procedures of solving the simpler diffusion and advection equations may then be used to solve the advection‐diffusion problem.

Findings

In this paper, several different computational LOD procedures were developed and discussed for solving the two‐dimensional transport equation. These schemes are based on the time‐splitting finite difference approximations.

Practical implications

The new approach is simple and effective. The results of a numerical experiment are given, and the accuracy are discussed and compared.

Originality/value

A comparison of calculations with the results of the conventional finite difference techniques demonstrates the good accuracy of the proposed approach.

Details

Kybernetes, vol. 36 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 20 September 2018

Neeraj Dhiman and Mohammad Tamsir

The purpose of this paper is to present a modified form of trigonometric cubic B-spline (TCB) collocation method to solve nonlinear Fisher’s type equations. Taylor series…

Abstract

Purpose

The purpose of this paper is to present a modified form of trigonometric cubic B-spline (TCB) collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. Five examples are taken for analysis. The obtained results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs. The authors also carried out the stability analysis which proves that the method is unconditionally stable.

Design/methodology/approach

The authors present a modified form of TCB collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. The authors also carried out the stability analysis.

Findings

The authors found that the proposed method results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs.

Originality/value

The authors propose a new method, namely, modified form of TCB collocation method. In the authors’ best knowledge, aforesaid method is not proposed by any other author. The authors used this method to solve nonlinear Fisher’s type equations and obtained more accurate results than the results obtained by other methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 June 2017

Chao Wang, Jinju Sun and Yan Ba

The purpose of this paper is to develop a Vortex-In-Cell (VIC) method with the semi-Lagrangian scheme and apply it to the high-Re lid-driven cavity flow.

259

Abstract

Purpose

The purpose of this paper is to develop a Vortex-In-Cell (VIC) method with the semi-Lagrangian scheme and apply it to the high-Re lid-driven cavity flow.

Design/methodology/approach

The VIC method is developed for simulating high Reynolds number incompressible flow. A semi-Lagrangian scheme is incorporated in the convection term to produce unconditional stability, which gets rid of the constraint of the convection Courant-Friedrichs-Lewy (CFL) condition; the adaptive time step is used to maintain the numerical stability of the diffusion term; and the velocity boundary condition is readily converted to the vorticity formulation to suit discontinuous boundary treatment. The VIC simulation results are compared with those produced by other gird methods reported in open literature studies.

Findings

The lid-driven cavity flow is simulated from Re = 100 to 100,000. Similar vortex birth mechanisms are exhibited though, but distinct flow characteristics are revealed. At Re = 100 to 7,500, the cavity flow is confirmed steady. At Re = 10,000, 15,000 and 20,000, the cavity flow is periodical with a primary vortex held spatially at the center. In particular, at Re = 100,000 highly turbulent characteristics is first revealed and an analogous primary vortex is formed but in motion rather than stationary, which is caused by the considerable flow separation at all the boundaries.

Originality/value

In the lid-driven cavity, the flow becomes extremely complex and highly turbulent at Re = 100,000, and the analogous primary vortex structure is observed. Boundary layer separation is observed at all walls, producing small vortices and causing the displacement of the analogous primary vortex. Such a finding original and has not yet been reported by other investigators. It may provide a basis for conducting in-depth studies of the lid-driven cavity flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2020

Tahir Nazir, Muhammad Abbas and Muhammad Kashif Iqbal

The purpose of this paper is to present a new cubic B-spline (CBS) approximation technique for the numerical treatment of coupled viscous Burgers’ equations arising in the study…

Abstract

Purpose

The purpose of this paper is to present a new cubic B-spline (CBS) approximation technique for the numerical treatment of coupled viscous Burgers’ equations arising in the study of fluid dynamics, continuous stochastic processes, acoustic transmissions and aerofoil flow theory.

Design/methodology/approach

The system of partial differential equations is discretized in time direction using the finite difference formulation, and the new CBS approximations have been used to interpolate the solution curves in the spatial direction. The theoretical estimation of stability and uniform convergence of the proposed numerical algorithm has been derived rigorously.

Findings

A different scheme based on the new approximation in CBS functions is proposed which is quite different from the existing methods developed (Mittal and Jiwari, 2012; Mittal and Arora, 2011; Mittal and Tripathi, 2014; Raslan et al., 2017; Shallal et al., 2019). Some numerical examples are presented to validate the performance and accuracy of the proposed technique. The simulation results have guaranteed the superior performance of the presented algorithm over the existing numerical techniques on approximate solutions of coupled viscous Burgers’ equations.

Originality/value

The current approach based on new CBS approximations is novel for the numerical study of coupled Burgers’ equations, and as far as we are aware, it has never been used for this purpose before.

Article
Publication date: 5 March 2018

Ramesh Chand Mittal and Sumita Dahiya

In this study, a second-order standard wave equation extended to a two-dimensional viscous wave equation with timely differentiated advection-diffusion terms has been solved by…

Abstract

Purpose

In this study, a second-order standard wave equation extended to a two-dimensional viscous wave equation with timely differentiated advection-diffusion terms has been solved by differential quadrature methods (DQM) using a modification of cubic B-spline functions. Two numerical schemes are proposed and compared to achieve numerical approximations for the solutions of nonlinear viscous wave equations.

Design/methodology/approach

Two schemes are adopted to reduce the given system into two systems of nonlinear first-order partial differential equations (PDE). For each scheme, modified cubic B-spline (MCB)-DQM is used for calculating the spatial variables and their derivatives that reduces the system of PDEs into a system of nonlinear ODEs. The solutions of these systems of ODEs are determined by SSP-RK43 scheme. The CPU time is also calculated and compared. Matrix stability analysis has been performed for each scheme and both are found to be unconditionally stable. The results of both schemes have been extensively discussed and compared. The accuracy and reliability of the methods have been successfully tested on several examples.

Findings

A comparative study has been carried out for two different schemes. Results from both schemes are also compared with analytical solutions and the results available in literature. Experiments show that MCB-DQM with Scheme II yield more accurate and reliable results in solving viscous wave equations. But Scheme I is comparatively less expensive in terms of CPU time. For MCB-DQM, less depository requirements lead to less aggregation of approximation errors which in turn enhances the correctness and readiness of the numerical techniques. Approximate solutions to the two-dimensional nonlinear viscous wave equation have been found without linearizing the equation. Ease of implementation and low computation cost are the strengths of the method.

Originality/value

For the first time, a comparative study has been carried out for the solution of nonlinear viscous wave equation. Comparisons are done in terms of accuracy and CPU time. It is concluded that Scheme II is more suitable.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 405