Search results

1 – 10 of 38
Content available
Article
Publication date: 1 February 2004

1421

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1945

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 May 2022

Wenhua Guo, Xinmin Hong and Chunxia Chen

This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation…

Abstract

Purpose

This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation and multi-body dynamics and put forward the speed threshold for safe running of train under different crosswind speeds.

Design/methodology/approach

The computational fluid dynamics method is adopted to simulate the aerodynamic force in the whole process of train passing each other by using dynamic grid technology. The dynamic model of vehicle-bridge coupling system is established considering the effects of aerodynamic force of train passing each other under crosswind, the dynamic response of train intersection on the bridge under crosswind is computed and the running safety of the train is evaluated.

Findings

The aerodynamic force of trains' intersection has little effects on the derailment factor, lateral wheel-rail force and vertical acceleration of train, but it increases the offload factor of train and significantly increases the lateral acceleration of train. The crosswind has a significant effect on increasing the derailment factor, lateral wheel-rail force and offload factor of train. The offload factor of train is the key factor to control the threshold of train speed. The impact of the aerodynamic force of trains' intersection on running safety cannot be ignored. When the extreme values of crosswind wind speed are 15 m·s−1, 20 m·s−1 and 25 m·s−1, respectively, the corresponding speed thresholds for safe running of train are 350 km·h−1, 275 km·h−1 and 200 km·h−1, respectively.

Originality/value

The research can provide a more precise numerical method to study the running safety of high-speed trains under the aerodynamic effect of trains passing each other on bridge in crosswind.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 22 September 2022

Marcin Figat

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that…

1551

Abstract

Purpose

This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that needs a lot of detailed aerodynamic analysis which describes the mutual impact of the main parts of the aircraft. The purpose of this paper is to build the numerical model that allows to make an analysis of necessary flaps (front and rear) deflection and prepare the control strategy for this kind of aircraft.

Design/methodology/approach

Aircrafts’ aerodynamic characteristics were obtained using the MGAERO software which is a commercial computing fluid dynamics tool created by Analytical Methods, Inc. This software uses the Euler flow model. Results from this software were used in the static stability evaluation and trim condition analysis. The trim conditions are the outcome of the optimisation process whose goal was to find the best front and rear flap deflection to achieve the best lift to drag (L/D) ratio.

Findings

The main outcome of this investigation is the proposal of strategy for the front and rear flap deflection which ensured the maximum L/D ratio and satisfied the trim condition. Moreover, the analysis of the mutual impact of the front and rear wings and the analysis of the control surface impact on the aerodynamic characteristic of the aircraft are presented.

Research limitations/implications

In terms of aerodynamic computation, MGAERO software uses an inviscid flow model. However, this research is for the conceptual stage of the design and the MGAERO software grantee satisfied accurate respect to relatively low time of computations.

Practical implications

The ultimate goal is to build an aircraft in a tandem wing configuration and to conduct flying tests or wind tunnel tests. The presented result is one of the milestones to achieve this goal.

Originality/value

The aircraft in the tandem wing configuration is an aerodynamic-coupled configuration that needs detailed analysis to find the mutual interaction between the front and rear wings. Moreover, the mutual impact of the front and rear flaps is necessary too. Obtaining these results allowed this study to build the numerical model of the aircraft in the tandem wing configuration. It allows to find the best strategy of flap deflection, which allows to obtain the maximum L/D ratio and satisfy the trim condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 March 2006

Terry Ford

431

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 7 June 2022

Mary Ashley Stanton, Jason Anderson, John M. Dickens and Lance Champagne

The purpose of this research is to explore the utility of autonomous transport across two independent airframe maintenance operations at a single location.

Abstract

Purpose

The purpose of this research is to explore the utility of autonomous transport across two independent airframe maintenance operations at a single location.

Design/methodology/approach

This study leveraged discrete event simulation that encompassed real-world conditions on a United States Air Force flight line. Though the Theory of Constraints (TOC) lens, a high-demand, human-controlled delivery asset is analyzed and the impact of introducing an autonomous rover delivery vehicle is assessed. The authors’ simulations explored varying numbers and networks of rovers as alternative sources of delivery and evaluated these resources’ impact against current flight line operations.

Findings

This research indicates that the addition of five autonomous rovers can significantly reduce daily expediter delivery tasks, which results in additional expertise necessary to manage and execute flight line operations. The authors assert that this relief would translate into enhancements in aircraft mission capable rates, which could increase overall transport capacity and cascade into faster cargo delivery times, systemwide. By extension, the authors suggest overall inventory management could be improved through reduction in transportation shipping time variance, which enhances the Department of Defense’s overall supply chain resilience posture.

Originality/value

When compared against existing practices, this novel research provides insight into actual flight line movement and the potential benefits of an alternative autonomous delivery system. Additionally, the research measures the potential savings in the workforce and vehicle use that exceeds the cost of the rovers and their employment.

Details

Journal of Defense Analytics and Logistics, vol. 6 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 8 June 2023

Amer Jazairy, Timo Pohjosenperä, Jaakko Sassali, Jari Juga and Robin von Haartman

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

1733

Abstract

Purpose

This research examines what motivates professional truck drivers to engage in eco-driving by linking their self-reports with objective driving scores.

Design/methodology/approach

Theory of Planned Behavior (TPB) is illustrated in an embedded, single-case study of a Finnish carrier with 17 of its truck drivers. Data are obtained through in-depth interviews with drivers, their fuel-efficiency scores generated by fleet telematics and a focus group session with the management.

Findings

Discrepancies between drivers’ intentions and eco-driving behaviors are illustrated in a two-by-two matrix that classifies drivers into four categories: ideal eco-drivers, wildcards, wannabes and non-eco-drivers. Attitudes, subjective norms and perceived behavioral control are examined for drivers within each category, revealing that drivers’ perceptions did not always align with the reality of their driving.

Research limitations/implications

This study strengthens the utility of TPB through data triangulation while also revealing the theory’s inherent limitations in elucidating the underlying causes of its three antecedents and their impact on the variance in driving behaviors.

Practical implications

Managerial insights are offered to fleet managers and eco-driving solution providers to stipulate the right conditions for drivers to enhance fuel-efficiency outcomes of transport fleets.

Originality/value

This is one of the first studies to give a voice to professional truck drivers about their daily eco-driving practice.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 11
Type: Research Article
ISSN: 0960-0035

Keywords

Content available
Article
Publication date: 1 August 2005

Kovalev Igor

549

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 June 2003

451

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 3
Type: Research Article
ISSN: 0002-2667

Open Access
Article
Publication date: 4 May 2020

José Pedro Soares Pinto Leite and Mark Voskuijl

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to…

8119

Abstract

Purpose

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.

Design/methodology/approach

To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.

Findings

The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found.

Originality/value

The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 38