Search results

1 – 10 of 684
Article
Publication date: 6 February 2023

G. Edward Gibson, Mounir El Asmar, Abdulrahman Yussef and David Ramsey

Assessing front end engineering design (FEED) accuracy is significant for project owners because it can support informed decision-making, including confidence in cost and schedule…

231

Abstract

Purpose

Assessing front end engineering design (FEED) accuracy is significant for project owners because it can support informed decision-making, including confidence in cost and schedule predictions. A framework to measure FEED accuracy does not exist in the literature or in practice, not does systematic data directly linking FEED accuracy to project performance. This paper aims to focus first on gauging and quantifying FEED accuracy, and second on measuring its impact on project performance in terms of cost change, schedule change, change performance, financial performance and customer satisfaction.

Design/methodology/approach

A novel measurement scheme was developed for FEED accuracy as a comprehensive assessment of factors related to the project leadership and execution teams, management processes and resources; to assess the environment surrounding FEED. The development of this framework built on a literature review and focus groups, and used the research charrettes methodology, guided by a research team of 20 industry professionals and input from 48 practitioners representing 31 organizations. Data were collected from 33 large industrial projects representing over $8.8 billion of installed cost, allowing for a statistical analysis of the framework's impact on performance.

Findings

This paper describes: (1) twenty-seven critical FEED accuracy factors; (2) an objective and scalable method to measure FEED accuracy; and (3) data showing that projects with high FEED accuracy outperformed projects with low FEED accuracy by 20 percent in terms of cost growth in relation to their approved budgets.

Practical implications

FEED accuracy is defined as the degree of confidence in the measured level of maturity of the FEED deliverables to serve as a basis of decision at the end of detailed scope, prior to detailed design. Assessing FEED accuracy is significant for project owners because it can support informed decision-making, including confidence in cost and schedule predictions.

Originality/value

FEED accuracy has not been assessed before, and it turned out to have considerable project performance implications. The new framework presented in this paper is the first of its kind, it has been tested rigorously, and it contributes to both the literature body of knowledge as well as to practice. As one industry leader recently stated, “it not only helped to assess the quality and adequacy of the technical documentation required, but also provided an opportunity to check the organization's readiness before making a capital investment decision.”

Details

Engineering, Construction and Architectural Management, vol. 31 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 September 2024

Ahmed E. Abouelregal, Marin Marin, S.S. Saskar and Abdelaziz Foul

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with…

Abstract

Purpose

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with thermoelasticity. It accounts for the fact that heat transfer and deformation are non-local processes that depend on long-term memory. The sphere is free of external stresses and rotates around one of its radial axes at a constant rate. The coupled system equations are solved using the Laplace transform. The outcomes showed that the viscoelastic deformation and thermal stresses increased with the value of the fractional order coefficients.

Design/methodology/approach

The results obtained are considered good because they indicate that the approach or model under examination shows robust performance and produces accurate or reliable results that are consistent with the corresponding literature.

Findings

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Originality/value

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 March 2024

Vipin Gupta, Barak M.S. and Soumik Das

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal…

Abstract

Purpose

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal effects and voids. Previous research has often overlooked the crucial aspects related to voids. This study aims to provide analytical solutions for Rayleigh waves propagating through a medium consisting of a nonlocal piezo-thermo-elastic material with voids under the Moore–Gibson–Thompson thermo-elasticity theory with memory dependencies.

Design/methodology/approach

The analytical solutions are derived using a wave-mode method, and roots are computed from the characteristic equation using the Durand–Kerner method. These roots are then filtered based on the decay condition of surface waves. The analysis pertains to a medium subjected to stress-free and isothermal boundary conditions.

Findings

Computational simulations are performed to determine the attenuation coefficient and phase velocity of Rayleigh waves. This investigation goes beyond mere calculations and examines particle motion to gain deeper insights into Rayleigh wave propagation. Furthermore, this investigates how kernel function and nonlocal parameters influence these wave phenomena.

Research limitations/implications

The results of this study reveal several unique cases that significantly contribute to the understanding of Rayleigh wave propagation within this intricate material system, particularly in the presence of voids.

Practical implications

This investigation provides valuable insights into the synergistic dynamics among piezoelectric constituents, void structures and Rayleigh wave propagation, enabling advancements in sensor technology, augmented energy harvesting methodologies and pioneering seismic monitoring approaches.

Originality/value

This study formulates a novel governing equation for a nonlocal piezo-thermo-elastic medium with voids, highlighting the significance of Rayleigh waves and investigating the impact of memory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Content available
Book part
Publication date: 24 June 2024

Noel Scott, Brent Moyle, Ana Cláudia Campos, Liubov Skavronskaya and Biqiang Liu

Abstract

Details

Cognitive Psychology and Tourism
Type: Book
ISBN: 978-1-80262-579-0

Article
Publication date: 10 September 2024

Steffany N. Cerda-Avila and Hugo I. Medellín-Castillo

This study aims to present and evaluate a novel analytical model to predict the structural properties of parts fabricated by fused filament fabrication (FFF) along any…

Abstract

Purpose

This study aims to present and evaluate a novel analytical model to predict the structural properties of parts fabricated by fused filament fabrication (FFF) along any non-orthogonal direction.

Design/methodology/approach

A new analytical model to estimate the ultimate tensile stress (UTS) and elastic modulus (E) of polylactic acid (PLA)-FFF parts fabricated in any non-orthogonal build orientation, is proposed. The new model is based on an ellipsoid, two angles that define the orientation with respect to the build axes, the infill value and the structural properties along the build axes. The proposed model is evaluated by comparing the UTS and E properties predicted by this model, with the results obtained from experimental tensile tests on PLA-FFF specimens manufactured using variable infill values and non-orthogonal build orientations.

Findings

The proposed model is able to predict with good precision the structural properties of PLA-FFF parts along any direction and infill value.

Research limitations/implications

Although the study and results are limited to the UTS and E tensile properties of PLA-FFF components, the model may be extended to other materials or similar additive manufacturing processes.

Practical implications

The new proposed model is able to determine the structural properties of FFF components in any direction, so it can be used during the design process of FFF parts, reducing the need for experimental tests and speeding up the product development process.

Originality/value

Existing models to predict the structural properties of FFF components are limited to orthogonal build orientations (X, Y and Z); however, the new proposed model is able to predict the tensile properties in any direction and infill value. In addition, a new set of experimental data about the structural behaviour of PLA-FFF parts along non-orthogonal build orientations is provided, extending the existing results in the literature.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 February 2024

Vartenie Aramali, George Edward Gibson, Hala Sanboskani and Mounir El Asmar

Earned value management systems (EVMS), also called integrated project and program management systems, have been greatly examined in the literature, which has typically focused on…

1723

Abstract

Purpose

Earned value management systems (EVMS), also called integrated project and program management systems, have been greatly examined in the literature, which has typically focused on their technical aspects rather than social. This study aims to hypothesize that improving both the technical maturity of EVMS and the social environment elements of EVMS applications together will significantly impact project performance outcomes. For the first time, empirical evidence supports a strong relationship between EVMS maturity and environment.

Design/methodology/approach

Data was collected from 35 projects through four workshops, attended by 31 industry practitioners with an average of 19 years of EVMS experience. These experts, representing 23 organizations, provided over 2,800 data points on sociotechnical integration and performance outcomes, covering projects totaling $21.8 billion. Statistical analyses were performed to derive findings on the impact of technical maturity and social environment on project success.

Findings

The results show statistically significant differences in cost growth, compliance, meeting project objectives and business drivers and customer satisfaction, between projects with high EVMS maturity and environment and projects with poor EVMS maturity and environment. Moreover, the technical and social dimensions were found to be significantly correlated.

Originality/value

Key contributions include a novel and tested performance-driven framework to support integrated project management using EVMS. The adoption of this detailed assessment framework by government and industry is driving a paradigm shift in project management of some of the largest and most complex projects in the U.S.; specifically transitioning from a project assessment based upon a binary approach for EVMS technical maturity (i.e. compliant/noncompliant to standards) to a wide-ranging scale (i.e. 0–1,000) across two dimensions.

Details

International Journal of Managing Projects in Business, vol. 17 no. 8
Type: Research Article
ISSN: 1753-8378

Keywords

Open Access
Article
Publication date: 28 August 2024

Fabian Kranert, Moritz Hinkelmann, Roland Lachmayer, Jörg Neumann and Dietmar Kracht

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components…

Abstract

Purpose

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components, specifically optomechanical parts. The potential of this approach is demonstrated by manufacturing function-integrated optomechanics for a low-power solid-state laser system.

Design/methodology/approach

For the production of function-integrated additively manufactured optomechanics using the FFF process, essential components and subsystems have been identified for which no design guidelines are available. This includes guidelines for integrating elements, particularly optics, into a polymer structure as well as guidelines for printing functional threads and ball joints. Based on these results, combined with prior research, a function-integrated low-power solid-state laser optomechanic was fabricated via the FFF process, using a commercial 3D printer of the type Ultimaker 3. The laser system's performance was assessed and compared to a reference system that employed commercial optomechanics, additionally confirming the design guidelines derived from the study.

Findings

Based on the design goal of function integration, the existing design guidelines for the FFF process are systematically extended. This success is demonstrated by the fabrication of an integrated optomechanic for a solid-state laser system.

Practical implications

Based on these results, scientists and engineers will be able to use the FFF process more extensively and benefit from the possibilities of function-integrated manufacturing.

Originality/value

Extensive research has been published on additive manufacturing of optomechanics. However, this research often emphasizes only cost reduction and short-term availability of components by reprinting existing parts. This paper aims to explore the capabilities of additive manufacturing in the production of function-integrated components to reduce the number of individual parts required, thereby decreasing the workload for system assembly and leading to an innovative production process for optical systems. Consequently, where needed, it provides new design guidelines or extends existing ones and verifies them by means of test series.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2024

Moontaha Farin, Jarin Tasnim Maisha, Ian Gibson and M. Tarik Arafat

Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the…

Abstract

Purpose

Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the health-care industry due to its strength to manufacture custom-designed and personalized 3D constructs. Recently, AM technologies are being explored to develop personalized drug delivery systems, such as personalized oral dosages, implants and others due to their potential to design and develop systems with complex geometry and programmed controlled release profile. Furthermore, in 2015, the US Food and Drug Administration approved the first AM medication, Spritam® (Apprecia Pharmaceuticals) which has led to tremendous interest in exploring this technology as a bespoke solution for patient-specific drug delivery systems. The purpose of this study is to provide a comprehensive overview of AM technologies applied to the development of personalized drug delivery systems, including an analysis of the commercial status of AM based drugs and delivery devices.

Design/methodology/approach

This review paper provides a detailed understanding of how AM technologies are used to develop personalized drug delivery systems. Different AM technologies and how these technologies can be chosen for a specific drug delivery system are discussed. Different types of materials used to manufacture personalized drug delivery systems are also discussed here. Furthermore, recent preclinical and clinical trials are discussed. The challenges and future perceptions of personalized medicine and the clinical use of these systems are also discussed.

Findings

Substantial works are ongoing to develop personalized medicine using AM technologies. Understanding the regulatory requirements is needed to establish this area as a point-of-care solution for patients. Furthermore, scientists, engineers and regulatory agencies need to work closely to successfully translate the research efforts to clinics.

Originality/value

This review paper highlights the recent efforts of AM-based technologies in the field of personalized drug delivery systems with an insight into the possible future direction.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 684