Search results

1 – 10 of 26
Article
Publication date: 22 March 2024

Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…

Abstract

Purpose

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.

Design/methodology/approach

Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.

Findings

The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.

Originality/value

This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 20 March 2024

Floriberta Binarti, Pranowo Pranowo, Chandra Aditya and Andreas Matzarakis

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that…

Abstract

Purpose

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that could suit Borobudur and Angkor Wat.

Design/methodology/approach

The study employed local climate zone (LCZ) indicators and ten-year historical climate data to identify similarities and differences in local climate characteristics. Satellite imagery processing was used to create maps of LCZ indicators. Meanwhile, microclimate models were used to analyze sky view factors and wind permeability.

Findings

The study found that the three tropical large-scale archaeological parks have low albedo, a medium vegetation index and high impervious surface index. However, various morphological characteristics, aerodynamic properties and differences in temple stone area and altitude enlarge the air temperature range.

Practical implications

Based on the similarities and differences in local climate, the study formulated mitigation strategies to preserve the sustainability of ancient temples and reduce visitors' heat stress.

Originality/value

The local climate characterization of tropical archaeological parks adds to the number of LCZs. Knowledge of the local climate characteristics of tropical archaeological parks can be the basis for improving thermal conditions.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 6 November 2023

Funda Baş Bütüner, Aysem Berrin Cakmakli, Ahmet Can Karakadilar and Esra Deniz

This article explores the impacts of the changing land-use on urban heat island (UHI) in an urban transformation zone in Ankara (Türkiye). Identifying a characteristic rural…

Abstract

Purpose

This article explores the impacts of the changing land-use on urban heat island (UHI) in an urban transformation zone in Ankara (Türkiye). Identifying a characteristic rural landscape until the 1950s, the study area experienced a drastic land-use change by razing the fertile landscape of the city and replacing it with a sealed surface. Development of the squatter houses after the 1960s and, subsequently, the implementation of a new housing morphology have introduced new sceneries, scales and surface conditions that make the study area a noteworthy case to analyze.

Design/methodology/approach

Regarding the drastic spatio-temporal change of the study area, this research assesses the impacts of the changing land-use on UHI based on three periods. Using 1957, 1991 and 2021 aerial imaginaries and maps, it analyzes the temperature alteration caused by the changing land-use. To do so, different surface types, green patterns and built-up areas have been modeled using Ankara climatic data and transferred to ENVI-Met to calculate the Universal Thermal Climate Index (UTCI) values.

Findings

The calculation has been developed over a transect covering an area of 40 m × 170 m, which includes diversity in terms of architecture, landscape and open space elements. To encourage future design strategies, the research findings deliberate into three extents that discuss the lacking climate knowledge in the ongoing urban transformation projects: impervious surface ratio and regional albedo variation, changing aspect ratio and temperature variation at the pedestrian level.

Originality/value

Urban transformation projects, being countrywide operations in Türkiye, need to cover climate-informed design strategies. Herein, the article underlines the critical position of design decisions in forming a climate-informed urban environment. Dwelling on a typical model of housing transformation in Türkiye, the research could trigger climate-informed urban development strategies in the country.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 28 February 2023

Emmanuel Otchere-Darko, Laura Atuah, Richard Opoku and Christian Koranteng

Green roofs are strategies for the ecological intensification of cities and a measure of meeting some of the sustainable development goals (SDGs). They have widely been adopted as…

Abstract

Purpose

Green roofs are strategies for the ecological intensification of cities and a measure of meeting some of the sustainable development goals (SDGs). They have widely been adopted as an adaptation strategy against an urban heat island (UHI). However, they are conventionally soil-based making it difficult and expensive to adopt as a strategy for greening existing buildings (GEB). This paper, therefore, develops a novel green roof system using climbers for thermal-radiative performance. The paper explores the vitality of climbing species as a nature-based strategy for GEB, and for the ecological improvement of the predominantly used cool roofs in sub-Saharan Africa (SSA).

Design/methodology/approach

Simulation for the same building Kejetia Central Market (KCM) Redevelopment; the existing aluminium roof (AL), soil-based extensive green roof (GR1) and the proposed green roof using climbing plants (GR2) were performed using ENVI-met. The AL and GR1 were developed as reference models to evaluate and compare thermal-radiative performance of the conceptual model (GR2). The long wave radiation emission (Qlw), mean radiant temperature (MRT) and outdoor air temperature (Ta) of all three roofing systems were simulated under clear sky conditions to assess the performance and plant vitality considering water access, leaf temperature (Tf) and latent heat flux (LE0) of GR1 and GR2.

Findings

There was no short wave radiation (Qsw) absorption at the GR2 substrate since the climbers have no underlying soil mass, recording daily mean average Qlw emission of 435.17 Wm−2. The soil of GR1, however, absorbed Qsw of 390.11 Wm−2 and a Qlw emission of 16.20 wm−2 higher than the GR2. The AL recorded the lowest Qlw value of 75.43 Wm−2. Also, the stomatal resistance (rs) was higher in GR1 while GR2 recorded a higher average mean transpiration flux of 0.03 g/sm3. This indicates a higher chance of survival of the climbers. The Ta of GR2 recording 0.45°C lower than the GR1 could be a good UHI adaptation strategy.

Research limitations/implications

No previous research on climbers for green roof systems was found for comparison, so the KCM project provided a unique confluence of dynamic events including the opportunity for block-scale impact assessment of the proposed GEB strategy. Notwithstanding, the single case study allowed a focussed exploration of the novel theory of redefining green roof systems with climbers. Moreover, the simulation was computationally expensive, and engaging multiple case studies were found to be overly exhaustive to arrive at the same meaningful conclusion. As a novelty, therefore, this research provides an alternative theory to the soil-based green roof phenomenon.

Practical implications

The thermal-radiative performance of green roofs could be improved with the use of climbers. The reduction of the intensity of UHI would lead to improved thermal comfort and building energy savings. Also, very little dependence on the volume of soil would require little structural load consideration thereby leading not only to cheaper green roof construction but their higher demand, adoption and implementation in SSA and other low-income economies of the global south.

Social implications

The reduction of the consumption of topsoil and water for irrigation could avoid the negative environmental impacts of land degradation and pollution which have a deleterious impact on human health. This fulfils SDG 12 which seeks to ensure responsible consumption of products. This requires the need to advance the research for improvement and training of local built environment practitioners with new skills for installation to ensure social inclusiveness in the combat against the intractable forces of negative climate impacts.

Originality/value

Climbers are mostly known for green walls, but their innovative use for green roof systems has not been attempted and adopted; it could present a cost-effective strategy for the GEB. The proposed green roof system with climbers apart from becoming a successful strategy for UHI adaptation was also able to record an estimated 568% savings on topsoil consumption with an impact on the reduction of pollution from excavation. The research provides an initial insight into design options, potentials and limitations on the use of climbers for green roofs to guide future research and experimental verification.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 July 2023

Zahra Jalali, Asaad Y. Shamseldin and Sandeeka Mannakkara

Climate change reports from New Zealand claim that climate change will impact some cities such as Auckland from a heating-dominated to a cooling-dominated climate. The benefits…

Abstract

Purpose

Climate change reports from New Zealand claim that climate change will impact some cities such as Auckland from a heating-dominated to a cooling-dominated climate. The benefits and risks of climate change on buildings' thermal performance are still unknown. This paper examines the impacts of climate change on the energy performance of residential buildings in New Zealand and provides insight into changes in trends in energy consumption by quantifying the impacts of climate change.

Design/methodology/approach

The present paper used a downscaling method to generate weather data for three locations in New Zealand: Auckland, Wellington and Christchurch. The weather data sets were applied to the energy simulation of a residential case study as a reference building using a validated building energy analysis tool (EnergyPlus).

Findings

The result indicated that in Wellington and Christchurch, heating would be the major thermal load of residential buildings, while in Auckland, the main thermal load will change from heating to cooling in future years. The revised R-values for the building code will affect the pattern of dominant heating and cooling demands in buildings in Auckland in the future, while in Wellington and Christchurch, the heating load will be higher than the cooling load.

Originality/value

The findings of this study gave a broader insight into the risks and opportunities of climate change for the thermal performance of buildings. The results established the significance of considering climate change in energy performance analysis to inform the appropriate building codes for the design of residential buildings to avoid future costly changes to buildings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 August 2022

Hamed Kamelnia, Pirouz Hanachi and Mina Moayedi

In response, this study developed a mathematical and computational method, through spatial configurations with justified plan graph (JPG), drawn from Space Syntax to extract…

Abstract

Purpose

In response, this study developed a mathematical and computational method, through spatial configurations with justified plan graph (JPG), drawn from Space Syntax to extract essential information of the spatial topology of 13 valuable traditional courtyard houses located in Toon historical city of Iran.

Design/methodology/approach

Historical vernacular housing has always been designed to incorporate and reflect the local lifestyle and cultural conditions. “Courtyard” is a fundamental part of traditional Iranian houses. This traditional building type includes a walled boundary and a complex of open, semi-enclosed and enclosed spaces. This study investigates the traditional houses in Toon historical town. Toon is one of the ancient towns in southeast Iran, including old courtyard houses in its heritage context. The spatial influence of the courtyard contributes to the formation of this famous architectural type.

Findings

The results show the remarkable impact of this space on dominating the plan of traditional Toon houses configuration compared to other spaces in all cases. Furthermore, spatial accessibility has changed over time, and the Safavid period had a higher level of integration and lower level of accessibility (mean i = 7.03) rather than the Qajar period (mean i = 6.34); also, privacy has decreased progressively.

Originality/value

The knowledge of characteristics of this historical architecture needs to be gathered for the preservation and conservation of the built heritage. Hence, the principle behind traditional Iranian courtyards was investigated to recognize the difference between the spatial influence of the courtyard and other spaces and the changes in the courtyard over time.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 28 March 2024

Hatice Merve Yanardag Erdener and Ecem Edis

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts…

Abstract

Purpose

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts on LWs’ energy efficiency-related thermal behavior was aimed, considering that studies on their relative effects are limited. LWs of varying leaf albedo, leaf transmittance and leaf area index (LAI) were studied for Antalya, Turkey for typical days of four seasons.

Design/methodology/approach

Dynamic simulations run by Envi-met were used to assess the plant characteristics’ influence on seasonal and orientation-based heat fluxes. After model calibration, a sensitivity analysis was conducted through 112 simulations. The minimum, mean and maximum values were investigated for each plant characteristic. Energy need (regardless of orientation), temperature and heat flux results were compared among different scenarios, including a building without LW, to evaluate energy efficiency and variables’ impacts.

Findings

LWs reduced annual energy consumption in Antalya, despite increasing energy needs in winter. South and west facades were particularly advantageous for energy efficiency. The impacts of leaf albedo and transmittance were more significant (44–46%) than LAI (10%) in determining LWs’ effectiveness. The changes in plant characteristics changed the energy needs up to ca 1%.

Research limitations/implications

This study can potentially contribute to generating guiding principles for architects considering LW use in their designs in hot-humid climates.

Originality/value

The plant characteristics’ relative impacts on energy efficiency, which cannot be easily determined by experimental studies, were examined using parametric simulation results regarding three plant characteristics.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 17 October 2023

Ayatallah Magdy, Ayman Hassaan Mahmoud and Ahmed Saleh

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity…

Abstract

Purpose

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity, as well as the improvement of outdoor spaces between office buildings to enhance social activities and quality of outdoor workplaces in a hot arid climate has been subjected to very little studies Thus, this study focuses on business parks (BPs) landscape elements. The objective of this study is to enhance the user's thermal comfort in the work environment, especially in the outdoors attached to the administrative and office buildings such as the BPs.

Design/methodology/approach

This research follows Four-phases methodology. Phase 1 is the investigation of the literature review including the Concept and consideration of BP urban planning, Achieving outdoor thermal comfort (OTC) and shading elements analysis. Phase 2 is the case study initial analysis targeting for prioritizing zones for shading involves three main methods: social assessment, geometrical assessment and environmental assessment. Phase 3 entails selecting shading elements that are suitable for the zones requiring shading parametrize the selected shading elements. Phase 4 focuses on the optimization of OTC through shading arrangements for the prioritized zones.

Findings

Shading design is a multidimensional process that requires consideration of various factors, including social aspects, environmental impact and structural integrity. Shading elements in urban areas play a crucial role in mitigating heat stress by effectively shielding surfaces from solar radiation. The integration of parametric design and computational optimization techniques enhances the shading design process by generating a wide range of alternative solutions.

Research limitations/implications

While conducting this research, it is important to acknowledge certain limitations that may affect the generalizability and scope of the findings. One significant limitation lies in the use of the shade audit method as a tool to prioritize zones for shading. Although the shade audit approach offers practical benefits for designers compared to using questionnaires, it may have its own inherent biases or may not capture the full complexity of human preferences and needs.

Originality/value

Few studies have focused on optimizing the type and location of devices that shade outdoor spaces. As a result, there is no consensus on the workflow that should regulate the design of outdoor shading installations in terms of microclimate and human thermal comfort, therefore testing parametric shading scenarios for open spaces between office buildings to increase the benefit of the outer environment is very important. The study synthesizes OTC strategies by filling the research gap through the implementation of a proper workflow that utilizes parametric thermal comfort.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 17 October 2023

Hatzav Yoffe, Noam Raanan, Shaked Fried, Pnina Plaut and Yasha Jacob Grobman

This study uses computer-aided design to improve the ecological and environmental sustainability of early-stage landscape designs. Urban expansion on open land and natural…

Abstract

Purpose

This study uses computer-aided design to improve the ecological and environmental sustainability of early-stage landscape designs. Urban expansion on open land and natural habitats has led to a decline in biodiversity and increased climate change impacts, affecting urban inhabitants' quality of life and well-being. While sustainability indicators have been employed to assess the performance of buildings and neighbourhoods, landscape designs' ecological and environmental sustainability has received comparatively less attention, particularly in early-design stages where applying sustainability approaches is impactful.

Design/methodology/approach

The authors propose a computation framework for evaluating key landscape sustainability indicators and providing real-time feedback to designers. The method integrates spatial indicators with widely recognized sustainability rating system credits. A specialized tool was developed for measuring biomass optimization, precipitation management and urban heat mitigation, and a proof-of-concept experiment tested the tool's effectiveness on three Mediterranean neighbourhood-level designs.

Findings

The results show a clear connection between the applied design strategy to the indicator behaviour. This connection enhances the ability to establish sustainability benchmarks for different types of landscape developments using parametric design.

Practical implications

The study allows non-expert designers to measure and embed landscape sustainability early in the design stages, thus lowering the entry level for incorporating biodiversity enhancement and climate mitigation approaches.

Originality/value

This study expands the parametric vocabulary for measuring landscape sustainability by introducing spatial ecosystem services and architectural sustainability indicators on a unified platform, enabling the integration of critical climate and biodiversity-loss solutions earlier in the development process.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 25 March 2024

Fitri Rahmafitria and Regan Leonardus Kaswanto

One of the crucial elements of addressing global climate challenges through urban tourism is the continuing existence of urban forests. The reasoning is that the ecological…

Abstract

Purpose

One of the crucial elements of addressing global climate challenges through urban tourism is the continuing existence of urban forests. The reasoning is that the ecological attraction of urban forests can impact visitors’ intention to conduct pro-environmental behavior, including low-carbon actions. Thus, more visitors to urban forests will positively affect enhancing the quality of the urban environment. However, the extent to which ecological attraction can influence pro-environmental behavior warrants further investigation due to the complexity of psychosocial factors that impact behavioral intention. The main objective of this research is to examine the effects of the ecological attractiveness of urban forests on the pro-environmental behavior of visitors by exploring motivation, ecological experience, perceived value and knowledge as mediators. Moreover, whether the nature of the urban forest and facilities attract visitors simultaneously is also studied.

Design/methodology/approach

Data were collected from 615 respondents who visited three urban forests in Bandung, the second-most populous city in Indonesia, by five-point Likert questionnaires. As an analytical tool, SEM PLS was applied to establish the effect of the ecological performance of the urban forest on the increase in environmentally conscious behavior among urban forest visitors.

Findings

The findings demonstrate that the attractiveness of an urban forest affects the growth of environmentally responsible behaviors. Nonetheless, the attractiveness of urban forests is dictated more by their infrastructure than their ecological function. On the contrary, the visitors’ knowledge level can improve their motivation, environmental experience and perceived environmental value. These findings show the significance of developing educational programs with an emphasis on the experience of the visitors so that their ecological performance can contribute to improved low-carbon behavior. In conclusion, this work contributes to the management of sustainable urban tourism.

Research limitations/implications

This work also has some limitations. First, the medium R-square on intention behavior to low-carbon action suggests investigating other influential factors to produce a more robust conscious behavior. Mkono and Hughes (2020) mention that many complex factors that cause positive intention do not necessarily lead to environmental action. Thus, many psychosocial variables need to be explored in different models. Second, the convenient sampling used here does not represent the whole population, making generalization difficult. Thus, further work needs to apply more rigorous sampling techniques to validate the findings. Further investigations may also need to be conducted in other urban forests in another Asian country with a similar and different social context for benchmarking, as this study found that the type of attractive urban forest design is a more dense forest, which differs from other studies based in Europe. Exploring more influencing behavioral factors of pro-environmental action in the model is also suggested. Thus, we could contribute more to support recreational activities in urban forests.

Practical implications

As an implication for planning an urban forest to increase its recreational function, the authors illustrate the importance of producing educational programs. Although the improved knowledge of visitors has been shown to strengthen their commitment to perform pro-environmental actions, the mediating role of motivation, experience and perceived value reveals that some activities are required to achieve visitor motivation to actual behavior. Consequently, designing an urban forest requires not only the enhancement of eco-attractions and artificial elements for the convenience of visitors but also the development of an environmental education program that can improve visitors’ environmental experience and perception of ecological value. The designed educational program may use an experiential education approach incorporating objective knowledge of Earth’s current state. The urban forest education program must encourage visitors’ connection and participation with nature. Moreover, knowledge and information about Earth’s environmental quality can increase visitors’ perceived value, ensuring that their activities in the urban forest contribute to improved health, environmental quality and social environment. Thus, with well-managed and provided education, they are encouraged to adopt low-carbon action because it complements their contribution to a better quality environment.

Originality/value

The theoretical contribution of this research is generated through the role of urban forest attractiveness in the intention to conduct low-carbon action, which influences solutions to existing urban environmental problems. This work exhibits that both ecological attractiveness and attractiveness of artificial elements in urban forests can attract visitors and subsequently boost their outdoor recreation motivation, ecological experience and perceived value and then turn them to boost their intention to conduct low-carbon action. The physical characteristics of a site are behavioral stimuli that can increase a person’s motivation, experience and perception of the value of the environment, thereby increasing their intention to engage in low-carbon actions. This environment behavioral construction is fundamental in understanding that urban forests offer ecological benefits and influence the social quality of urban communities. Nevertheless, without visitor activity, urban forests are merely physical entities that become increasingly demanding to maintain. Due to this, an urban forest that is socially active and has an influence on promoting environmentally conscious behavior is needed, and its presence is becoming ever more crucial. This work shows the significance of integrating psychosocial approaches into managing tourism in urban forests.

Details

International Journal of Tourism Cities, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2056-5607

Keywords

1 – 10 of 26