Search results

1 – 4 of 4
Open Access
Book part
Publication date: 4 May 2018

Yusman, Aidi Finawan and Rusli

Purpose – The purpose of this research is to design and build a wild animal pest repellent device with combination of passive infrared (PIR) sensor and ultrasonic signal based on…

Abstract

Purpose – The purpose of this research is to design and build a wild animal pest repellent device with combination of passive infrared (PIR) sensor and ultrasonic signal based on microcontroller as system controller. The PIR sensor is used to detect the presence of wild animal objects and ultrasonic signals to interfere with the hearing.

Design/Methodology/Approach – The design of the system is built based on microcontroller as the system controller. The system as a whole includes hardware and software. The design of hardware consists of the system design on the transmitter side and the system design on the receiver side, while the software in the of system are algorithms using C language programming.

Findings – The resulting repellent device can detect animals approaching up to a distance of 5 m and may interfere with its hearing with a 40 kHz ultrasonic frequency up to a distance of 20 m. The system also uses remote monitoring devices using 433 MHz radio frequency up to a distance of 60 m.

Research Limitations/Implications – Each animal has different hearing frequencies, as well as some wild animals, but the hearing frequencies of wild animals are generally at ultrasonic frequencies. The frequency of animal hearing may vary from audio frequency to ultrasonic frequency, so ultrasonic wave emission testing with varying frequencies is required.

Practical Implications – This research combines systems on transmitters and receivers, with real-time monitoring of wild animal positions, and it can be possible to monitor the position of more detailed animals by installing more types of sensors as well as increasing the number of sensors.

Originality/Value – This paper may provide additional insight into the hearing frequencies of animals and may also serve as comparable papers for similar studies.

Open Access
Book part
Publication date: 4 May 2018

Dedi Satria, Syaifuddin Yana, Rizal Munadi and Saumi Syahreza

Purpose – The purpose of this paper is to develop prototype of the information system of the flood monitoring based internet of things (IoT). This prototype serves to assist users…

Abstract

Purpose – The purpose of this paper is to develop prototype of the information system of the flood monitoring based internet of things (IoT). This prototype serves to assist users in accessing flood levels through water levels and rainy weather conditions.

Design/Methodology/Approach – This paper presents the design of information system of flood monitoring based internet of things (IoT). This prototype study acquires water level and rainfall data using ultrasonic sensors HC-SR04 and rain sensor. Data of flood height and rain levels detected by sensors are processed using Arduino Uno Microcontroller to produce output data in HTML format. Flood altitude information system and rainy weather from the microcontroller are distributed using ethernet module as web server integrated with Wireless N Router TL-MR3020 as a gateway path to the user.

Findings – This research produces a prototype of web-based flood monitoring information system that has been able to distribute data of flood height and rainy weather in real time.

Research Limitations/Implications – In the implementation of measurement, the information system only accesses one flood detector or one flooded location.

Practical Implications – This research produces a prototype of web-based flood monitoring information system that has been able to distribute data of flood height and rainy weather in real time.

Originality/Value – System prototype is the first development that uses internet of things (IoTs) method in real time web-based flood measurement with information in the form of flood hazard information in the form of water level and rainy weather conditions.

Open Access
Book part
Publication date: 4 May 2018

Abstract

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Open Access
Book part
Publication date: 4 May 2018

Sri Safrina Dewi, Dedi Satria, Elin Yusibani and Didik Sugiyanto

Purpose – The purpose of this paper is to develop prototype of the web-based home fire early warning system using Wiznet W5500 Ethernet module. This system protocol helps users in…

Abstract

Purpose – The purpose of this paper is to develop prototype of the web-based home fire early warning system using Wiznet W5500 Ethernet module. This system protocol helps users in sending information of fire through the internet with the internet of things (IoT) method using Wiznet Ethernet module as communication media to the user.

Design/Methodology/Approach – This paper presents the design of web-based home fire early warning system using Wiznet W5500 Ethernet module. The system prototype is built using flame sensors, MQ-02 smoke sensors, and LM35 temperature sensors as input components. While on the processor side using Arduino Uno microcontroller as sensor data processing. Processed data is sent to the Ethernet module as a web server resulting in a web-based early warning information system with an alarm notification on the browser along with home location status information and sensor data.

Findings – This research produces a prototype of the web-based home fire early warning system using Wiznet W5500 Ethernet module that has been able to provide notification to the security officer housing.

Research Limitations/Implications – In the implementation of measurement, the information system only accesses one house detector or one fire location.

Practical Implications – This research produces a prototype of the web-based home fire early warning system using Wiznet W5500 Ethernet module that has been able to distribute data of temperature, smoke, and fire.

Originality/Value – The development of fire monitoring systems using flame sensors, smoke sensors and integrated temperature sensors in internet-based communication systems of things via the Internet W5500 does not appear to have been published yet.

Access

Only Open Access

Year

Content type

Book part (4)
1 – 4 of 4