Search results

1 – 3 of 3
Article
Publication date: 14 June 2023

Jeongjoon Boo, Seung Yeob Lee and Byung Duk Song

The next generation of mobility is arising, and various challenging mobilities have entered the limelight. One of the most exciting of these is urban air mobility (UAM), and one…

Abstract

Purpose

The next generation of mobility is arising, and various challenging mobilities have entered the limelight. One of the most exciting of these is urban air mobility (UAM), and one of its challenges is constructing effective and efficient UAM service network. This study took a quantitative approach to the problem in an effort to support and facilitate the UAM service industry.

Design/methodology/approach

This study derived a multi-objective and multi-period (MOMP) location optimization model to support strategic UAM service network design. The model, based on its long-term service plan, determines where and when to open UAM airports. In addition, this study applied a modified e-constraint algorithm to derive managerial decisions on the Pareto relationship in consideration of multiple objectives and multiple periods.

Findings

Each Pareto solution represents a different UAM service network configuration. Thus, the model can analyze the trade-offs between Pareto decisions for the UAM service network. A case study of UAM service network design in South Korea demonstrates the validity of the proposed mathematical model and algorithm.

Practical implications

The design of a UAM service network should consider various aspects. Its construction and operation would require significant investments of time, capital and people, which would redound to society over a significant span of time. The results of this study provide quantitative guidelines for derivation and analysis of various UAM service network configurations in consideration of multiple objectives and multiple periods.

Originality/value

This paper proposes MOMP optimization, which approach is suitable to the fundamental characteristics of expanding UAM service networks and their design. It is expected that the present study will make significant contributions to the efforts of those deriving and analyzing future UAM service networks.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 35 no. 12
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 28 September 2023

Álvaro Rodríguez-Sanz and Luis Rubio-Andrada

An important and challenging question for air transportation regulators and airport operators is the definition and specification of airport capacity. Annual capacity is used for…

Abstract

Purpose

An important and challenging question for air transportation regulators and airport operators is the definition and specification of airport capacity. Annual capacity is used for long-term planning purposes as a degree of available service volume, but it poses several inefficiencies when measuring the true throughput of the system because of seasonal and daily variations of traffic. Instead, airport throughput is calculated or estimated for a short period of time, usually one hour. This brings about a mismatch: air traffic forecasts typically yield annual volumes, whereas capacity is measured on hourly figures. To manage the right balance between airport capacity and demand, annual traffic volumes must be converted into design hour volumes, so that they can be compared with the true throughput of the system. This comparison is a cornerstone in planning new airport infrastructures, as design-period parameters are important for airport planners in anticipating where and when congestion occurs. Although the design hour for airport traffic has historically had a number of definitions, it is necessary to improve the way air traffic design hours are selected. This study aims to provide an empirical analysis of airport capacity and demand, specifically focusing on insights related to air traffic design hours and the relationship between capacity and delay.

Design/methodology/approach

By reviewing the empirical relationships between hourly and annual air traffic volumes and between practical capacity and delay at 50 European airports during the period 2004–2021, this paper discusses the problem of defining a suitable peak hour for capacity evaluation purposes. The authors use information from several data sources, including EUROCONTROL, ACI and OAG. This study provides functional links between design hours and annual volumes for different airport clusters. Additionally, the authors appraise different daily traffic distribution patterns and their variation by hour of the day.

Findings

The clustering of airports with respect to their capacity, operational and traffic characteristics allows us to discover functional relationships between annual traffic and the percentage of traffic in the design hour. These relationships help the authors to propose empirical methods to derive expected traffic in design hours from annual volumes. The main conclusion is that the percentage of total annual traffic that is concentrated at the design hour maintains a predictable behavior through a “potential” adjustment with respect to the volume of annual traffic. Moreover, the authors provide an experimental link between capacity and delay so that peak hour figures can be related to factors that describe the quality of traffic operations.

Originality/value

The functional relationships between hourly and annual air traffic volumes and between capacity and delay, can be used to properly assess airport expansion projects or to optimize resource allocation tasks. This study offers new evidence on the nature of airport capacity and the dynamics of air traffic design hours and delay.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 21 July 2023

Harry Edelman, Joel Stenroos, Jorge Peña Queralta, David Hästbacka, Jani Oksanen, Tomi Westerlund and Juha Röning

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the…

Abstract

Purpose

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the rapid advance in the field of autonomous drones, the development of ground infrastructure has received less attention. Contemporary airport design offers potential solutions for the infrastructure serving autonomous drone services. To that end, this paper aims to construct a framework for connecting air and ground operations for autonomous drone services. Furthermore, the paper defines the minimum facilities needed to support unmanned aerial vehicles for autonomous logistics and the collection of aerial data.

Design/methodology/approach

The paper reviews the state-of-the-art in airport design literature as the basis for analysing the guidelines of manned aviation applicable to the development of ground infrastructure for autonomous drone services. Socio-technical system analysis was used for identifying the service needs of drones.

Findings

The key findings are functional modularity based on the principles of airport design applies to micro-airports and modular service functions can be connected efficiently with an autonomous ground handling system in a sustainable manner addressing the concerns on maintenance, reliability and lifecycle.

Research limitations/implications

As the study was limited to the airport design literature findings, the evolution of solutions may provide features supporting deviating approaches. The role of autonomy and cloud-based service processes are quintessentially different from the conventional airport design and are likely to impact real-life solutions as the area of future research.

Practical implications

The findings of this study provided a framework for establishing the connection between the airside and the landside for the operations of autonomous aerial services. The lack of such framework and ground infrastructure has hindered the large-scale adoption and easy-to-use solutions for sustainable logistics and aerial data collection for decision-making in the built environment.

Social implications

The evolution of future autonomous aerial services should be accessible to all users, “democratising” the use of drones. The data collected by drones should comply with the privacy-preserving use of the data. The proposed ground infrastructure can contribute to offloading, storing and handling aerial data to support drone services’ acceptability.

Originality/value

To the best of the authors’ knowledge, the paper describes the first design framework for creating a design concept for a modular and autonomous micro-airport system for unmanned aviation based on the applied functions of full-size conventional airports.

Details

Facilities , vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Access

Year

Last 6 months (3)

Content type

1 – 3 of 3