Search results

1 – 10 of 18
Article
Publication date: 21 February 2024

Seo-Hyeon Oh and Keun Park

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally…

Abstract

Purpose

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally burdensome, especially for intricate microcellular architectures. This study aims to propose a direct slicing method tailored for digital light processing-type AM processes for the efficient generation of slicing data for microcellular structures.

Design/methodology/approach

The authors proposed a direct slicing method designed for microcellular structures, encompassing micro-lattice and triply periodic minimal surface (TPMS) structures. The sliced data of these structures were represented mathematically and then convert into 2D monochromatic images, bypassing the time-consuming slicing procedures required by 3D STL data. The efficiency of the proposed method was validated through data preparations for lattice-based nasopharyngeal swabs and TPMS-based ellipsoid components. Furthermore, its adaptability was highlighted by incorporating 2D images of additional features, eliminating the requirement for complex 3D Boolean operations.

Findings

The direct slicing method offered significant benefits upon implementation for microcellular structures. For lattice-based nasopharyngeal swabs, it reduced data size by a factor of 1/300 and data preparation time by a factor of 1/8. Similarly, for TPMS-based ellipsoid components, it reduced data size by a factor of 1/60 and preparation time by a factor of 1/16.

Originality/value

The direct slicing method allows for bypasses the computational burdens associated with traditional indirect slicing from 3D STL data, by directly translating complex cellular structures into 2D sliced images. This method not only reduces data volume and processing time significantly but also demonstrates the versatility of sliced data preparation by integrating supplementary features using 2D operations.

Article
Publication date: 13 May 2024

Fay Rhianna Claybrook, Darren John Southee and Mazher Mohammed

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a…

Abstract

Purpose

Cushioning is a useful material property applicable for a range of applications from medical devices to personal protective equipment. The current ability to apply cushioning in a product context is limited by the appropriateness of available materials, with polyurethane foams being the current gold standard material. The purpose of this study is to investigate additively manufactured flexible printing of scaffold structures as an alternative.

Design/methodology/approach

In this study, this study investigates triply periodic minimal surface (TPMS) structures, including Gyroid, Diamond and Schwarz P formed in thermoplastic polyurethane (TPU), as a possible alternative. Each TPMS structure was fabricated using material extrusion additive manufacturing and evaluated to ASTM mechanical testing standard for polymers. This study focuses attention to TPMS structures fabricated for a fixed unit cell size of 10 mm and examine the compressive properties for changes in the scaffold porosity for samples fabricated in TPU with a shore hardness of 63A and 90A.

Findings

It was discovered that for increased porosity there was a measured reduction in the load required to deform the scaffold. Additionally, a complex relationship between the shore hardness and the stiffness of a structure. It was highlighted that through the adjustment of porosity, the compressive strength required to deform the scaffolds to a point of densification could be controlled and predicted with high repeatability.

Originality/value

The results indicate the ability to tailor the scaffold design parameters using both 63A and 90A TPU material, to mimic the loading properties of common polyurethane foams. The use of these structures indicates a next generation of tailored cushioning using additive manufacturing techniques by tailoring both geometry and porosity to loading and compressive strengths.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

Article
Publication date: 29 August 2024

Iman Ghaderi, Amir Hossein Behravesh, Seyyed Kaveh Hedayati, Seyed Alireza Alavinasab Ardebili, Omid Kordi, Ghaus Rizvi and Khodayar Gholivand

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical…

Abstract

Purpose

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical applications such as addressing mandibular bone loss.

Design/methodology/approach

To enhance both the mechanical and biological properties of scaffolds, an automatic multimaterial setup using vat photopolymerization was developed. This setup features a linear system with two resin vats and one ultrasonic cleaning tank, facilitating the integration of diverse materials and structures to optimize scaffold composition. Such versatility allows for the simultaneous achievement of various characteristics in scaffold design.

Findings

The printed multimaterial scaffolds, featuring 20 Wt.% hydroxylapatite (HA) on the interior and poly-L-lactic acid (PLLA) with 1 Wt.% graphene oxide (GO) on the exterior, exhibited favorable mechanical and biological properties at the optimum postcuring and heat-treatment time. Using an edited triply periodic minimal surface (TPMS) lattice structure further enhanced these properties. Various multimaterial specimens were successfully printed and evaluated, showcasing the capability of the setup to ensure functionality, cleanliness and adequate interface bonding. Additionally, a novel Gyroid TPMS scaffold with a nominal porosity of 50% was developed and experimentally validated.

Originality/value

This study demonstrates the successful fabrication of multimaterial components with minimal contaminations and suitable mechanical and biological properties. By combining PLLA-HA and PLLA-GO, this innovative technique holds significant promise for enhancing the effectiveness of regenerative procedures, particularly in the realm of dentistry.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 June 2024

Ludovico Martignoni, Andrea Vegro, Sara Candidori, Mohammad Qasim Shaikh, Sundar V. Atre, Serena Graziosi and Riccardo Casati

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless…

Abstract

Purpose

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless steel filament and their influence on the porosity and mechanical properties of the printed parts. It also investigates the feasibility of manufacturing complex geometries, including strut-and-node and triply periodic minimal surface lattices.

Design/methodology/approach

A three-step experimental campaign was carried out. Firstly, the printing parameters were evaluated by analysing the green parts: porosity and density measurements were used to define the best printing profile. Then, the microstructure and porosity of the sintered parts were investigated using light optical and scanning electron microscopy, while their mechanical properties were obtained through tensile tests. Finally, manufacturability limits were explored with reference samples and cellular structures having different topologies.

Findings

The choice of printing parameters drastically influences the porosity of green parts. A printing profile which enables reaching a relative density above 99% has been identified. However, voids characterise the sintered components in parallel planes at the interfaces between layers, which inevitably affect their mechanical properties. Lattice structures and complex geometries can be effectively printed, debinded, and sintered if properly dimensioned to fulfil printing constraints.

Originality/value

This study provides an extensive analysis of the printing parameters for the 316L filament used and an in-depth investigation of the potential of the metal fused filament fabrication technology in printing lightweight structures.

Open Access
Article
Publication date: 28 August 2024

Zhengxin Tu, Jinghua Xu, Shuyou Zhang and Jianrong Tan

A biomechanical design method of lightweight full contacted insole based on structural anisotropy bespoke (SAB) is proposed, which can better redistribute the stress distribution…

Abstract

Purpose

A biomechanical design method of lightweight full contacted insole based on structural anisotropy bespoke (SAB) is proposed, which can better redistribute the stress distribution of SAB designed personalized insole.

Design/methodology/approach

The reconstructed joint biomechanics are simulated using finite element analysis (FEA) to develop a lightweight full contact insole. Innovatively, the anisotropic properties of the triply periodic minimal surface (TPMS) structure, which contribute to reducing insole weight, are considered to optimize stress distribution. Additionally, porosity and manufacturing time are included as design objectives. To validate the lightweight insole design, FEA is employed to simulate the stress distribution of the ergonomic insole, which can be fabricated by additive manufacturing (AM) with TPU.

Findings

With a little 0.924% loss in porosity, the maximum stress of lightweight SAB designed insoles is extremely decreased by 19.2917%.

Originality/value

The biomechanical design of the lightweight full contact insole based on SAB can effectively redistribute stress, avoid stress concentration and improve the mechanical properties of the ergonomic individual insole.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2023

Kevin Moj, Robert Owsiński, Grzegorz Robak and Munish Kumar Gupta

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of…

Abstract

Purpose

Additive manufacturing (AM), a rapidly evolving paradigm, has shown significant advantages over traditional subtractive processing routines by allowing for the custom creation of structural components with enhanced performance. Numerous studies have shown that the technical qualities of AM components are profoundly affected by the discovery of novel metastable substructures in diverse alloys. Therefore, the purpose of this study is to determine the effect of cell structure parameters on its mechanical response.

Design/methodology/approach

Initially, a methodology was suggested for testing porous materials, focusing on static tensile testing. For a qualitative evaluation of the cellular structures produced, computed tomography (CT) was used. Then, the CT scanner was used to analyze a sample and determine its actual relative density, as well as perform a detailed geometric analysis.

Findings

The experimental research demonstrates that the mechanical properties of a cell’s structure are significantly influenced by its shape during formation. It was also determined that using selective laser melting to produce cell structures with a minimum single-cell size of approximately 2 mm would be the most appropriate method.

Research limitations/implications

Further studies of cellular structures for testing their static tensile strength are planned for the future. The study will be carried out for a larger number of samples, taking into account a wider range of cellular structure parameters. An important step will also be the verification of the results of the static tensile test using numerical analysis for the model obtained by CT scanning.

Originality/value

The fabrication of metallic parts with different cellular structures is very important with a selective laser melted machine. However, the determination of cell size and structure with mechanical properties is quiet novel in this current investigation.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 July 2024

Oğulcan Eren, Hüseyin Kürşad Sezer, Nurullah Yüksel, Ahmad Reshad Bakhtarı and Olcay Ersel Canyurt

This study aims to address the limited understanding of the complex correlations among strut size, structural orientation and process parameters in selective laser melting…

86

Abstract

Purpose

This study aims to address the limited understanding of the complex correlations among strut size, structural orientation and process parameters in selective laser melting (SLM)-fabricated lattice structures. By investigating the effects of crucial process parameters, strut diameter and angle on the microstructure and mechanical performance of AlSi10Mg struts, the research seeks to enhance the surface morphologies, microstructures and mechanical properties of AM lattice structures, enabling their application in various engineering fields, including medical science and space technologies.

Design/methodology/approach

This comprehensive study investigates SLM-fabricated AlSi10Mg strut structures, examining the effects of process parameters, strut diameter and angle on densification behavior and microstructural characteristics. By analyzing microstructure, geometrical properties, melt pool morphology and mechanical properties using optical microscopy, scanning electron microscope, energy dispersive X-ray spectroscopy and microhardness tests, the research addresses existing gaps in knowledge on fine lattice strut elements and their impact on surface morphology and microstructure.

Findings

The study revealed that laser energy, power density and strut inclination angle significantly impact the microstructure, geometrical properties and mechanical performance of SLM-produced AlSi10Mg struts. Findings insight enable the optimization of SLM process parameters to produce lattice structures with enhanced surface morphologies, microstructures and mechanical properties, paving the way for applications in medical science and space technologies.

Originality/value

This study uniquely investigates the effects of processing parameters, strut diameter and inclination angle on SLM-fabricated AlSi10Mg struts, focusing on fine lattice strut elements with diameters as small as 200 µm. Unlike existing literature, it delves into the complex correlations among strut size, structural orientation and process parameters to understand their impact on microstructure, geometrical imperfections and mechanical properties. The study provides novel insights that contribute to the optimization of SLM process parameters, moving beyond the typically recommended guidelines from powder or machine suppliers.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 January 2023

Damira Dairabayeva, Asma Perveen and Didier Talamona

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a…

1200

Abstract

Purpose

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a weak bonding strength between dissimilar materials. Low interfacial bonding strength leads to defects, anisotropy and temperature gradient in materials which negatively impact the mechanical performance of the multi-material prints. The purpose of this study was to assess the performance of different interface geometry designs in terms of the mechanical properties of the specimens.

Design/methodology/approach

Tensile test specimens were printed using: mono-material without a boundary interface, mono-material with the interface geometries (Face-to-face; U-shape; T-shape; Dovetail; Encapsulation; Mechanical interlocking; and Overlap) and multi-material with the interface geometries. The materials chosen with high and low compatibility were Tough polylactic acid (PLA) and TPU.

Findings

The main results of this study indicate that the interface geometries with the mechanical constriction between materials provide better structural integrity to the specimens. Moreover, in the case of the mono-material parts, the most effective interface design was the mechanical interlocking for both Tough PLA and TPU. On the other hand, in the case of multi-material specimens, the encapsulation showed the highest ultimate tensile strength, whereas the overlap and T-shape presented more robust bonding.

Originality/value

This study examines the mechanical performance, particularly tensile strength, strain at break, Young’s modulus and yield strength of different interface designs which were not studied in the previous studies.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 18