Search results

1 – 10 of 452
Open Access
Article
Publication date: 13 June 2023

Xiaogen Liu, Shuang Qi, Detian Wan and Dezhi Zheng

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Abstract

Purpose

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Design/methodology/approach

In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel, taking the passenger compartment window glass of the CRH3 high speed train on Wuhan–Guangzhou High Speed Railway as the research object, this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit, the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km·h-1.

Findings

The results show that while crossing the tunnel, the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures, which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain. The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa, and the maximum value occurs at the corresponding time of crossing the tunnel groups. The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects, while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel. The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time. The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure. Thus, the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.

Originality/value

The research results provide data support for the analysis of mechanical characteristics, damage mechanism, strength design and structural optimization of high speed train glass.

Open Access
Article
Publication date: 22 June 2022

Mo He, Xiaogang Wang and Naigang Cui

The purpose of this paper is to present a high accuracy path following method for low-cost fixed-wing UAVs.

Abstract

Purpose

The purpose of this paper is to present a high accuracy path following method for low-cost fixed-wing UAVs.

Design/methodology/approach

The original vector field (VF) algorithm is condensed. A spatial integration mechanism is added to the existing VF and nonlinear guidance law, aiming to decrease steady-state cross-track-error and cope with long-term disturbance.

Findings

Numerical simulations show the proposed method could diminish steady-state cross-track-error effectively. Test flights show the proposed method is applicable on low-cost fixed-wing UAVs.

Practical implications

The path following accuracy shown in simulations and test flights indicates the proposed method could be deployed in scenarios including inflight rendezvous, formation, trafficway take-off and landing.

Originality/value

This paper provides an improved high-accuracy path following method for low-cost fixed-wing UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 August 2001

66

Abstract

Details

Industrial Lubrication and Tribology, vol. 53 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 15 June 2019

Florian Fahrenbach and Florian Kragulj

Considering personality as changeable through a bottom-up process of altering states, habits and traits, constitutes a shift in the predominant paradigm within personality…

3656

Abstract

Purpose

Considering personality as changeable through a bottom-up process of altering states, habits and traits, constitutes a shift in the predominant paradigm within personality psychology. The purpose of this paper is to reconsider Bateson’s theory of learning and organizational triple-loop learning in light of this recent empirical evidence.

Design/methodology/approach

This paper uses a multi-disciplinary conceptual approach. Based on an integrative analysis of literature from recent work in personality psychology, four dimensions (process, content, time and context) are identified that allow linking personality change and triple-loop learning.

Findings

Identifying a bottom-up process of changing states, habits and traits as being central to change personality, allows for reconsidering Bateson’s theory of learning as a theory of personality development (Learning II) and personality change (Learning III). Functionally equivalent, organizational triple-loop learning is conceptualized as a change in an organization’s identity over time that may be facilitated through a change in responding to events and a change in the organization’s routines.

Practical implications

Interventions that change how organizations respond to events and that change the routines within an organization may be suitable to facilitate triple-loop learning in terms of changing organizational identity over time.

Originality/value

This paper contributes to the discussion on Bateson’s theory of learning and organizational triple-loop learning. As interest in personality change grows in organization studies, this paper aims to transfer these findings to organizational learning.

Details

The Learning Organization, vol. 29 no. 6
Type: Research Article
ISSN: 0969-6474

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1149

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 1 March 2005

Jianwen Liao, Patrick J. Murphy and Harold Welsch

In this article we define, validate, and propose a construct of entrepreneurial intensity, or the degree of entrepreneurship in firms. First, in defining the construct, we explore…

1411

Abstract

In this article we define, validate, and propose a construct of entrepreneurial intensity, or the degree of entrepreneurship in firms. First, in defining the construct, we explore theoretical differences between entrepreneurial intensity and orientation in order to distinguish it. Second, we empirically validate a measure of entrepreneurial intensity using data based on a sample of 563 entrepreneurs. Third, we propose avenues for research on how entrepreneurial intensity distinguishes entrepreneurs and entrepreneurial action. Finally, we detail theoretical implications of using entrepreneurial intensity as an antecedent and outcome.

Details

New England Journal of Entrepreneurship, vol. 8 no. 2
Type: Research Article
ISSN: 2574-8904

Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2133

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 1 November 2022

Olusegun Emmanuel Akinwale and Uche C. Onokala

Crises are moments when citizens are beckoning on the political leaders for necessary action. As a president, one is expected to change the narratives during the pandemic that…

Abstract

Purpose

Crises are moments when citizens are beckoning on the political leaders for necessary action. As a president, one is expected to change the narratives during the pandemic that split the world. This analysis aimed at investigating the American government’s response to the critical crisis of COVID-19 and its policy implementation.

Design/methodology/approach

The study explored a case point method using a narrative and qualitative analysis to diagnose the USA’s response to the COVID-19 crisis. An exploratory approach was further adopted to finetune the case study report.

Findings

The analysis demonstrates that Trump’s power dynamics were weak in the USA and lacked crisis control even as the President that the entire nations of the world were looking up to. The case study report also showed that Trump did not possess the audacity of resilience to manage the crisis. The analysis provides us with how presidential leadership under Trump placed the USA in a state of colossal failure enmeshed with high rates of COVID-19 cases, deaths and unending incapacity to create a fundamental consensus in the fight against the COVID-19 pandemic today. This report shows Trump aged prolonged inability to drive governance mechanisms in the US and illustrated pockets of failures in decision analysis and information dissemination as a leader.

Originality/value

The study revealed how incompetent Trump was in responding to the crisis. This study has provided academia with an understanding of leadership dynamics and behaviour through a Nigerian scholar lens and a sociological perspective.

Details

LBS Journal of Management & Research, vol. 20 no. 1/2
Type: Research Article
ISSN: 0972-8031

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 25 July 2019

Klaus Roppert, Florian Toth and Manfred Kaltenbacher

The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-thermal problems and apply it to the heating process of a thin moving steel sheet…

1006

Abstract

Purpose

The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-thermal problems and apply it to the heating process of a thin moving steel sheet. Performing efficient numerical simulations of induction heating processes becomes ever more important because of faster production development cycles, where the quasi steady-state solution of the problem plays a pivotal role.

Design/methodology/approach

To avoid time-consuming transient simulations, the eddy current problem is transformed into frequency domain and a harmonic balancing scheme is used to take into account the nonlinear BH-curve. The thermal problem is solved in steady-state domain, which is carried out by including a convective term to model the stationary heat transport due to the sheet velocity.

Findings

The presented solution strategy is compared to a classical nonlinear transient reference solution of the eddy current problem and shows good convergence, even for a small number of considered harmonics.

Originality/value

Numerical simulations of induction heating processes are necessary to fully understand certain phenomena, e.g. local overheating of areas in thin structures. With the presented approach it is possible to perform large 3D simulations without excessive computational resources by exploiting certain properties of the multiharmonic solution of the eddy current problem. Together with the use of nonconforming interfaces, the overall computational complexity of the problem can be decreased significantly.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 452