Search results

1 – 5 of 5
Article
Publication date: 8 May 2018

Junjie Ma

Solutions for the earth return mutual impedance play an important role in analyzing couplings of multi-conductor systems. Generally, the mutual impedance is approximated by…

Abstract

Purpose

Solutions for the earth return mutual impedance play an important role in analyzing couplings of multi-conductor systems. Generally, the mutual impedance is approximated by Pollaczek integrals. The purpose of this paper is devising fast algorithms for calculation of this kind of improper integrals and its applications.

Design/methodology/approach

According to singular points, the Pollaczek integral is divided into two parts: the finite integral and the infinite integral. The finite part is computed by combining an efficient Levin method, which is implemented with a Chebyshev differential matrix. By transforming the integration path, the tail integral is calculated with help of a transformed ClenshawCurtis quadrature rule.

Findings

Numerical tests show that this new method is robust to high oscillation and nearly singularities. Thus, it is suitable for evaluating Pollaczek integrals. Furthermore, compared with existing method, the presented algorithm gives high-order approaches for the earth return mutual impedance between conductors over a multilayered soil with wide ranges of parameters.

Originality/value

An efficient truncation strategy is proposed to accelerate numerical calculation of Pollaczek integral. Compared with existing algorithms, this method is easier to be applied to computation of similar improper integrals, such as Sommerfeld integral.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 June 2008

Elçin Yusufoğlu and Barış Erbaş

This paper sets out to introduce a numerical method to obtain solutions of Fredholm‐Volterra type linear integral equations.

Abstract

Purpose

This paper sets out to introduce a numerical method to obtain solutions of Fredholm‐Volterra type linear integral equations.

Design/methodology/approach

The flow of the paper uses well‐known formulations, which are referenced at the end, and tries to construct a new approach for the numerical solutions of Fredholm‐Volterra type linear equations.

Findings

The approach and obtained method exhibit consummate efficiency in the numerical approximation to the solution. This fact is illustrated by means of examples and results are provided in tabular formats.

Research limitations/implications

Although the method is suitable for linear equations, it may be possible to extend the approach to nonlinear, even to singular, equations which are the future objectives.

Practical implications

In many areas of mathematics, mathematical physics and engineering, integral equations arise and most of these equations are only solvable in terms of numerical methods. It is believed that the method is applicable to many problems in these areas such as loads in elastic plates, contact problems of two surfaces, and similar.

Originality/value

The paper is original in its contents, extends the available work on numerical methods in the solution of certain problems, and will prove useful in real‐life problems.

Details

Kybernetes, vol. 37 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 26 August 2014

Junjie Ma and Shuhuang Xiang

The earth-return mutual impedances between underground and overhead conductors can be expressed by Pollaczek integrals. Many efforts have been exerted to calculating this kind of…

Abstract

Purpose

The earth-return mutual impedances between underground and overhead conductors can be expressed by Pollaczek integrals. Many efforts have been exerted to calculating this kind of integrals. However, most of numerical methods turn out to be time-consuming as integrands become highly oscillatory and strongly singular. Therefore, efficient algorithms should be devised. The paper aims to discuss these issues.

Design/methodology/approach

The paper separates the singularity from the whole integral and couple with the singularity and oscillation, respectively. A sinh transformation is applied for the finite part and complex integration method is used to calculate the tail.

Findings

Numerical experiments show that the given method shares the property that the stronger the singularity and the higher the oscillation, the better the accuracy of the calculation.

Originality/value

The sinh transformation is first proposed to calculate Pollaczek integrals. This efficient algorithm can be used to evaluate mutual impedances between conductors. Also, it provides a new aspect of the research on fast calculation of Pollaczek integrals and Sommerfeld integrals.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 June 2021

Anirban Pal

Fiber networks represent a vast class of materials, which can be modeled by representing its microstructure using one-dimensional fiber embedded in three-dimensional space…

Abstract

Purpose

Fiber networks represent a vast class of materials, which can be modeled by representing its microstructure using one-dimensional fiber embedded in three-dimensional space. Investigating the statics, dynamics and thermodynamics of such structures from computational first principles requires the efficient estimation of cohesive-repulsive energies and forces between interacting fiber segments. This study offers a fast, efficient and effective computational methodology to estimate such interactions which can be coupled with Hamiltonian mechanics to simulate the behavior of fibrous systems.

Design/methodology/approach

This method preserves the uniformly continuous distribution of particles on the line segments and utilizes adaptive numerical integration of relevant distance-distribution functions to estimate the effective interaction energy and forces.

Findings

This method is found to be cheaper to compute and more accurate than the corresponding discrete scheme. This scheme is also versatile in the sense that any pair-wise interaction model can be used.

Research limitations/implications

The scheme depends on the availability of a suitable pair-interaction potential, such as a Lennard-Jones potential or Morse potential. Additionally, it can only be used for systems which are purely fibrous in nature. For example, fiber composites with a non-fibrous matrix are not addressed.

Practical implications

Paper, woven and hair can be represented as purely fibrous at some relevant length scales and are thus excellent candidate systems for this scheme.

Originality/value

This paper presents a novel method which allows rapid and accurate implementation of an otherwise computationally expensive process.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2017

Mohammad Heydari, Ghasem Barid Loghmani and Abdul-Majid Wazwaz

The main purpose of this paper is to implement the piecewise spectral-variational iteration method (PSVIM) to solve the nonlinear Lane-Emden equations arising in mathematical…

Abstract

Purpose

The main purpose of this paper is to implement the piecewise spectral-variational iteration method (PSVIM) to solve the nonlinear Lane-Emden equations arising in mathematical physics and astrophysics.

Design/methodology/approach

This method is based on a combination of Chebyshev interpolation and standard variational iteration method (VIM) and matching it to a sequence of subintervals. Unlike the spectral method and the VIM, the proposed PSVIM does not require the solution of any linear or nonlinear system of equations and analytical integration.

Findings

Some well-known classes of Lane-Emden type equations are solved as examples to demonstrate the accuracy and easy implementation of this technique.

Originality/value

In this paper, a new and efficient technique is proposed to solve the nonlinear Lane-Emden equations. The proposed method overcomes the difficulties arising in calculating complicated and time-consuming integrals and terms that are not needed in the standard VIM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 5 of 5