Search results

1 – 3 of 3
Open Access
Article
Publication date: 13 March 2024

Yanshuang Mei, Xin Xu and Xupin Zhang

Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated…

Abstract

Purpose

Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated with urban digital transformation, in order to yield detailed insights that can contribute to the formulation of well-informed decisions and strategies in the field of urban development initiatives.

Design/methodology/approach

Through analysis of parallels between urban digital transformation and gyroscope motion in physics, the study developed the urban digital transformation gyroscope model (UDTGM), which comprises of seven core elements. With the balanced panel dataset from 268 cities at and above the prefecture level in China, we validate the dynamic mechanism of this model.

Findings

The findings of this study underscore that the collaboration among infrastructure development, knowledge-driven forces and economic operations markedly bolsters the urban digital transformation gyroscope’s efficacy.

Practical implications

This research introduces a groundbreaking framework for comprehending urban digital transformation, potentially facilitating its balanced and systemic practical implementation.

Originality/value

This study pioneers the UDTGM theoretically and verifies the dynamic mechanism of this model with real data.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 18 no. 2
Type: Research Article
ISSN: 2071-1395

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

487

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Access

Only content I have access to

Year

Last 3 months (3)

Content type

1 – 3 of 3