Search results

1 – 10 of 55
Article
Publication date: 2 September 2024

Yiting Kang, Biao Xue, Jianshu Wei, Riya Zeng, Mengbo Yan and Fei Li

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid…

12

Abstract

Purpose

The accurate prediction of driving torque demand is essential for the development of motion controllers for mobile robots on complex terrains. This paper aims to propose a hybrid model of torque prediction, adaptive EC-GPR, for mobile robots to address the problem of estimating the required driving torque with unknown terrain disturbances.

Design/methodology/approach

An error compensation (EC) framework is used, and the preliminary prediction driving torque value is achieved using Gaussian process regression (GPR). The error is predicted using a continuous hidden Markov model to generate compensation for the prediction residual caused by terrain disturbances and uncertainties. As the final step, a gain coefficient is used to adaptively tune the significance of the compensation term through parameter resetting. The proposed model is verified on a sample set, including the driving torque of a mobile robot on three different sandy terrains with two driving modes.

Findings

The results show that the adaptive EC-GPR yields the highest prediction accuracy when compared with existing methods.

Originality/value

It is demonstrated that the proposed model can predict the driving torque accurately for mobile robots in an unconstructed environment without terrain identification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 August 2024

He Cheng, Fandi Lin, Jing Wu and Tong Zhang

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Abstract

Purpose

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Design/methodology/approach

Flux harmonics and torque characteristics are analyzed by using finite element analysis. First, a suitable pole-slot combination is selected by comparison. Second, field modulation processes of DSPMHV machine are analyzed to identify the reason for high torque density. And it is compared with dual-side-PM (DSPM) machine to analyze flux harmonic and verify the flux concentrating effect of the Halbach array.

Findings

The permanent magnet (PM) field of the DSPM machine is approximately equal to the superposition of stator-PM field and rotor-PM field, which is the reason for high torque density. And the Halbach array can reduce flux leakage and increase the amplitude of main flux harmonics, then further improves torque. Improvement of torque can be achieved by choosing right pole-slot combination, adopting DSPM machine structure, reducing flux leakage and adopting field modulation principle.

Originality/value

The DSPMHV machine with split-tooth is proposed in this paper by combining the Halbach array with DSPM structure. This paper analyzes the bidirectional field modulation process, the reason for high torque density of the DSPM machine is obtained. Comparison with the DSPM machine verifies the flux concentrating effect of Halbach array. To alleviate the magnetic saturation in part of stator teeth, this paper proposes an improved DSPMHV machine with shaped auxiliary magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 August 2024

Xiaobao Chai, Jinglin Liu, RuiZhi Guan and Minglang Xiao

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid…

Abstract

Purpose

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid stepping machine (DPMEHSM) with tangential and radial magnetization.

Design/methodology/approach

First, the structure of DPMEHSM is introduced and its operation principle is analyzed by describing the variation in stator poles versus time. Second, based on the similar electrical load and amount of PM, the size equations of the DPMEHSM are designed and the main parameters are presented. Third, the electromagnetic performances including the PM flux linkage distribution, magnetic density distribution, air-gap field, back electromotive force (back-EMF), detent torque, holding torque and output torque of DPMEHSM and stator-PM hybrid stepping machine (SPMHSM) are analyzed based on the finite element method.

Findings

The results show that the DPMEHSM has superiority in back-EMF, holding torque and output torque.

Originality/value

This paper proposes a DPMEHSM with tangential and radial magnetization to improve the output torque density.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2024

Meng Min, Jiang Xian, Gao Tenglong and Ping Yufei

Torque is one of the main loads acting on the aircraft wing, the horizontal tail and the vertical tail. In flight load measurement, due to the significant influence of the bending…

Abstract

Purpose

Torque is one of the main loads acting on the aircraft wing, the horizontal tail and the vertical tail. In flight load measurement, due to the significant influence of the bending moment and the shear force on the strain gauge, the accuracy of torque measurement is usually low. Therefore, aircraft torque measurement is difficult. Based on the characteristics of a certain type of horizontal tail, a measurement method for the torque with high accuracy was proposed in this paper.

Design/methodology/approach

A new simplified torque measurement method for the all-moving horizontal tail was proposed based on the spiral driver. The feasibility of the method and key points of the tests were analyzed and studied through a virtual load calibration test.

Findings

Based on the results of the real load calibration test, the torque load equation with high accuracy was established, and the torque measurement was achieved in load flight tests.

Research limitations/implications

However, the proposed method is based on the structure of the spiral driver. If there is generally no spiral driver at the aircraft wings and vertical tails, then the appropriate torque measurement method needs to be derived according to the specific object.

Originality/value

The research in this paper provides a new idea for the torque measurement of aircraft structures, which can be used for the torque measurement of subsequent aircraft types.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 June 2024

Jie Wu, Kang Wang, Ming Zhang, Leilei Guo, Yongpeng Shen, Mingjie Wang, Jitao Zhang and Vaclav Snasel

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge…

Abstract

Purpose

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge computational complexity. The notable feature of CPHES machine is the symmetric range of field-strengthening and field-weakening, but this type of machine is destined to be equipped with a complex electromagnetic structure. The purpose of this paper is to propose a hybrid analysis method to quickly and accurately solve the cogging torque of complex 3D electromagnetic structure, which is applicable to CPHES machine with different magnetic pole shapings.

Design/methodology/approach

In this paper, a hybrid method for calculating the cogging torque of CPHES machine is proposed, which considers three commonly used pole shapings. Firstly, through magnetic field analysis, the complex 3D finite element analysis (FEA) is simplified to 2D field computing. Secondly, the discretization method is used to obtain the distribution of permeance and permeance differential along the circumference of the air-gap, taking into account the effect of slots. Finally, the cogging torque of the whole motor is obtained by using the idea of modular calculation and the symmetry of the rotor structure.

Findings

This method is applicable to different pole shapings. The experimental results show that the proposed method is consistent with 3D FEA and experimental measured results, and the average calculation time is reduced from 8 h to 4 min.

Originality/value

This paper proposes a new concept for calculating cogging torque, which is a hybrid calculation of dimension reduction and discretization modules. Based on magnetic field analysis, the 3D problem is simplified into a 2D issue, reducing computational complexity. Based on the symmetry of the machine structure, a modeling method for discretized analytical models is proposed to calculate the cogging torque of the machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 17 May 2024

Tianyi Zhang, Haowu Luo, Ning Liu, Feiyan Min, Zhixin Liang and Gao Wang

As the demand for human–robot collaboration in manufacturing applications grows, the necessity for collision detection functions in robots becomes increasingly paramount for…

Abstract

Purpose

As the demand for human–robot collaboration in manufacturing applications grows, the necessity for collision detection functions in robots becomes increasingly paramount for safety. Hence, this paper aims to improve the existing method to achieve efficient, accurate and sensitive robot collision detection.

Design/methodology/approach

The external torque is estimated by momentum observers based on the robot dynamics model. Because the state of the joints is more accessible to distinguish under the action of the suppression operator proposed in this paper, the mutated external torque caused by joint reversal can be accurately attenuated. Finally, time series analysis (TSA) methods can continuously generate dynamic thresholds based on external torques.

Findings

Compared with the collision detection method based only on TSA, the invalid time of the proposed method is less during joint reversal. Although the soft-collision detection accuracy of this method is lower than that of the symmetric threshold method, it is superior in terms of detection delay and has a higher hard-collision detection accuracy.

Originality/value

Owing to the mutated external torque caused by joint reversal, which seriously affects the stability of time series models, the collision detection method based only on TSA cannot detect continuously. The consequences are disastrous if the robot collides with people or the environment during joint reversal. After multiple experimental verifications, the proposed method still exhibits detection capabilities during joint reversal and can implement real-time collision detection. Therefore, it is suitable for various engineering applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 July 2024

Ruipan Lu, Zhangqi Liu, Xiping Liu, Baoyu Sun and Jiangwei Liang

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims…

Abstract

Purpose

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims to propose an intensifying-flux hybrid excitation PM machine. It is possible to adjust the air gap magnetic field by adjusting the field current in the excitation winding, thereby increasing the torque output capability and speed range of the machine.

Design/methodology/approach

First, a novel intensifying-flux hybrid excited permanent magnet synchronous machine (IF-HEPMSM) is proposed on the basis of intensifying-flux permanent magnet synchronous machine (IF-PMSM) and an equivalent magnetic circuit model is established. Second, the tooth width and yoke thickness of the machine stator are optimized to ensure the overload capacity of the machine while effectively improving the wide flux regulation range. Furthermore, the electromagnetic characteristics of the IF-HEPMSM are investigated and compared with the IF-PMSM and conventional permanent magnet synchronous machine (PMSM) by using finite element simulations.

Findings

The id of IF-HEPMSM and IF-PMSM is greater than zero low-speed magnetizing current. And the flux-weakening current of the IF-HEPMSM is 18% and 3% smaller than of the conventional PMSM and IF-PMSM.

Practical implications

Aiming at the problems of IF-PMSM applied to electric vehicles, this paper proposes an IF-HEPMSM. The air gap magnetic field is adjusted by controlling the current of the excitation winding to improve the reliability of the machine. Therefore, the IF-HEPMSM combines the advantages of high-power density and high efficiency of the PMSM and the controllable magnetic field of the electro-excitation machine, which is of great engineering value when applied in the field of electric vehicles.

Originality/value

The proposed IF-HEPMSM offers better flux regulation capability with electromagnetic characteristics analysis and maps of dq-axis current as compared to IF-PMSM and conventional PMSM. Moreover, the improvement of the torque can make up for the shortcomings of the insufficient torque output capability of the IF-PMSM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2024

Huijie Jin, Suihan Sui and Changyin Gao

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage…

Abstract

Purpose

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage over the use of quartz disk, but research into the torsional effect of quartz pillar is rare. This paper aims to investigate a novel type of torque sensor based on piezoelectric torsional effect.

Design/methodology/approach

Based on the theory of anisotropic elasticity and the Maxwell electromagnetism, the torsion stress and distribution of surface charge of a rectangular quartz pillar are calculated. Using finite element analysis, the polarized electric field of the piezoelectric pillar is solved. According to the theoretical calculation of torsional effect of piezoelectric quartz pillar, detection electrodes are mounted on the surface of the quartz pillar and a new type of torque sensor is designed.

Findings

The calibration experimental results show that the bound charges are proportional to the torque applied, and the torque sensor has fully reached the dynamometer standard.

Originality/value

This paper shows that the torsional effect of the developed piezoelectric quartz pillar can be used to create a new type of piezoelectric torque sensor.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 July 2024

Peng Guo, Weiyong Si and Chenguang Yang

The purpose of this paper is to enhance the performance of robots in peg-in-hole assembly tasks, enabling them to swiftly and robustly accomplish the task. It also focuses on the…

71

Abstract

Purpose

The purpose of this paper is to enhance the performance of robots in peg-in-hole assembly tasks, enabling them to swiftly and robustly accomplish the task. It also focuses on the robot’s ability to generalize across assemblies with different hole sizes.

Design/methodology/approach

Human behavior in peg-in-hole assembly serves as inspiration, where individuals visually locate the hole firstly and then continuously adjust the peg pose based on force/torque feedback during the insertion process. This paper proposes a novel framework that integrate visual servo and adjustment based on force/torque feedback, the authors use deep neural network (DNN) and image processing techniques to determine the pose of hole, then an incremental learning approach based on a broad learning system (BLS) is used to simulate human learning ability, the number of adjustments required for insertion process is continuously reduced.

Findings

The author conducted experiments on visual servo, adjustment based on force/torque feedback, and the proposed framework. Visual servo inferred the pixel position and orientation of the target hole in only about 0.12 s, and the robot achieved peg insertion with 1–3 adjustments based on force/torque feedback. The success rate for peg-in-hole assembly using the proposed framework was 100%. These results proved the effectiveness of the proposed framework.

Originality/value

This paper proposes a framework for peg-in-hole assembly that combines visual servo and adjustment based on force/torque feedback. The assembly tasks are accomplished using DNN, image processing and BLS. To the best of the authors’ knowledge, no similar methods were found in other people’s work. Therefore, the authors believe that this work is original.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 May 2024

Liang Wang, Shoukun Wang and Junzheng Wang

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims…

Abstract

Purpose

Mobile robots with independent wheel control face challenges in steering precision, motion stability and robustness across various wheel and steering system types. This paper aims to propose a coordinated torque distribution control approach that compensates for tracking deviations using the longitudinal moment generated by active steering.

Design/methodology/approach

Building upon a two-degree-of-freedom robot model, an adaptive robust controller is used to compute the total longitudinal moment, while the robot actuator is regulated based on the difference between autonomous steering and the longitudinal moment. An adaptive robust control scheme is developed to achieve accurate and stable generation of the desired total moment value. Furthermore, quadratic programming is used for torque allocation, optimizing maneuverability and tracking precision by considering the robot’s dynamic model, tire load rate and maximum motor torque output.

Findings

Comparative evaluations with autonomous steering Ackermann speed control and the average torque method validate the superior performance of the proposed control strategy, demonstrating improved tracking accuracy and robot stability under diverse driving conditions.

Research limitations/implications

When designing adaptive algorithms, using models with higher degrees of freedom can enhance accuracy. Furthermore, incorporating additional objective functions in moment distribution can be explored to enhance adaptability, particularly in extreme environments.

Originality/value

By combining this method with the path-tracking algorithm, the robot’s structural path-tracking capabilities and ability to navigate a variety of difficult terrains can be optimized and improved.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 55