Search results

1 – 1 of 1
Article
Publication date: 13 April 2010

Olli Nousiainen, Timo Urhonen, Tero Kangasvieri, Risto Rautioaho and Jouko Vähäkangas

The purpose of this paper is to investigate the feasibility of using land grid array (LGA) solder joints as a second-level interconnection option in low-temperature co-fired…

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of using land grid array (LGA) solder joints as a second-level interconnection option in low-temperature co-fired ceramic (LTCC)/printed wiring board (PWB) assemblies for telecommunication applications. The characteristic behaviour of two commercial lead-free solder materials (Sn4Ag0.5Cu and Sn3Ag0.5Cu0.5In0.05Ni) in reflow processes and thermal cycling tests are also evaluated.

Design/methodology/approach

The effect of the reflow temperature profile on voiding in two lead-free solders in LTCC/PWB assemblies was investigated using X-ray and scanning electron microscopy (SEM) investigations. The test assemblies were fabricated and exposed to a temperature cycling test (TCT) in a 0-100°C or −40 to 125°C temperature range. Organic PWB material with a low coefficient of thermal expansion (CTE) was primarily used. In addition, to compare LGA assemblies with low and high global thermal mismatches, an LTCC module/FR-4 assembly was also fabricated and exposed to a TCT in a 0-100°C temperature range. The characteristic lifetime of the test assemblies was determined using DC resistance measurements. The failure mechanisms of the interconnections were verified using scanning acoustic microscopy, SEM and finite element (FE)-SEM investigations.

Findings

This work showed that the solderability of AgPt-metallized LTCC modules was poor, resulting in excessive voiding. This problem was avoided by using pre-tinned modules. In the test assemblies, the Sn4Ag0.5Cu joints had a lower void content and a higher characteristic lifetime compared with the Sn3Ag0.5Cu0.5In0.05Ni joints. Furthermore, it was observed that the Sn3Ag0.5Cu0.5In0.05Ni joints were more prone to fail along the interface between the Ag3Sn layer and the solder matrix than were the Sn4Ag0.5Cu joints. It was assumed that the observed difference in the primary failure mechanisms resulted in the decreased lifetime duration of the SnAgCu-InNi/Arlon in both temperature cycling conditions.

Originality/value

The results proved that the solderability of both solders in AgPt-metallized modules in a typical surface mount technology process was poor; however, the solderability of the test modules can be notably enhanced with pre-tinned pads. This work also demonstrated the effect of the metallization/solder pair on the failure mechanisms and failure rate in LTCC/PWB assemblies with LGA joints; the work also proved in the TCT, over a temperature range of 0-100°C, that using the present LGA joints in LTCC/PWB assemblies with a high global thermal mismatch did not increase the lifetime duration of the joints to the preferred level (3,000 cycles), whereas the performance of these joints was adequate in assemblies with a low global thermal mismatch. Moreover, the results indicated that using the LGA joint configuration enhanced the reliability of the LTCC/PWB assemblies compared with similar assemblies with collapsible ball grid array solder spheres.

Details

Soldering & Surface Mount Technology, vol. 22 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 1 of 1