Search results

1 – 6 of 6
Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 10 March 2022

X.R. Lü, Z. Liu, X.L. Lü and X. Wang

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of…

Abstract

Purpose

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of tractor body.

Design/methodology/approach

The mechanism is mainly composed of longitudinal slope leveling mechanism, transverse slope leveling mechanism and control components. According to the tractor body attitude in operation, the longitudinal slope leveling and lateral slope leveling can coordinate to realize the adaptive adjustment of tractor body. For this mechanism, the support mode of the linear three-point support and plane positioning combining is designed, and the leveling method of electromechanical combination is designed. The servo motor controls the longitudinal slope leveling mechanism through the reducer with self-locking function to realize the longitudinal leveling, and the servo driver controls the expansion and contraction of electric cylinder to realize lateral leveling. The designed mode can realize the relative independence and coordination of leveling in different directions.

Findings

The performance test results of the leveling mechanism are shown: the mechanism can work normally; the leveling accuracy can reach within 1°; and the leveling accuracy and stability can meet the design requirements. The leveling accuracy and stability of longitudinal slope are higher than that of lateral slope, and the coordination leveling effect of longitudinal slope and lateral slope is better than that of the independent leveling.

Originality/value

This study provides a technical reference for the design of leveling device of agricultural machines and tools in hilly and mountainous areas.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 April 2024

Zhuofeng Li, Shide Mo, Kaiwen Yang and Yunmin Chen

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Abstract

Purpose

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Design/methodology/approach

An arbitrary Lagrangian–Eulerian scheme is adopted to preserve the quality of mesh throughout the numerical simulation. Simplified methods of layered penetration and coupled pore pressure analysis of cone penetration have been proposed and verified by previous studies. The investigation is then extended by the present work to study the cone penetration test in a two-layered clay profile assumed to be homogeneous with the modified Cam clay model.

Findings

The reduction of the range of pore pressure with decreasing PF will cause a decrease of the sensing distance. The PF of the underlying soil is one of the factors that determine the development distance. The interface can be obtained by taking the position of the maximum curvature of the penetrometer resistance curve in the case of stiff clay overlying soft clay. In the case of soft clay overlying stiff clay, the interface locates at the maximum curvature of the penetrometer resistance curve above about 1.6D.

Research limitations/implications

The cone penetration analyses in this paper are conducted assuming smooth soil-cone contact.

Originality/value

A simplified method based on ALE in Abaqus/Explicit is proposed for layered penetration, which solves the problem of mesh distortion at the interface between two materials. The stiffness equivalent method is also proposed to couple pore pressure during cone penetration, which achieves efficient coupling of pore water pressure in large deformations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2024

Han Wang, Quan Zhang, Zhenquan Fan, Gongcheng Wang, Pengchao Ding and Weidong Wang

To solve the obstacle detection problem in robot autonomous obstacle negotiation, this paper aims to propose an obstacle detection system based on elevation maps for three types…

Abstract

Purpose

To solve the obstacle detection problem in robot autonomous obstacle negotiation, this paper aims to propose an obstacle detection system based on elevation maps for three types of obstacles: positive obstacles, negative obstacles and trench obstacles.

Design/methodology/approach

The system framework includes mapping, ground segmentation, obstacle clustering and obstacle recognition. The positive obstacle detection is realized by calculating its minimum rectangle bounding boxes, which includes convex hull calculation, minimum area rectangle calculation and bounding box generation. The detection of negative obstacles and trench obstacles is implemented on the basis of information absence in the map, including obstacles discovery method and type confirmation method.

Findings

The obstacle detection system has been thoroughly tested in various environments. In the outdoor experiment, with an average speed of 22.2 ms, the system successfully detected obstacles with a 95% success rate, indicating the effectiveness of the detection algorithm. Moreover, the system’s error range for obstacle detection falls between 4% and 6.6%, meeting the necessary requirements for obstacle negotiation in the next stage.

Originality/value

This paper studies how to solve the obstacle detection problem when the robot obstacle negotiation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 August 2023

Yinkai Niu, Heyun Bao, Wei Huang, Wuzhong Tan and Rupeng Zhu

During the operation of a wet clutch, there are fluctuations in speed and torque, which have an impact on the stability of the clutch and the strength of the friction plate and…

98

Abstract

Purpose

During the operation of a wet clutch, there are fluctuations in speed and torque, which have an impact on the stability of the clutch and the strength of the friction plate and the spline pair of the dual steel plate. The purpose of this study is to investigate the vibration characteristics of the wet clutch and the dynamic load characteristics of the spline pairs.

Design/methodology/approach

The spline pair model is established by the piecewise linear function method, and on this basis, dynamic equations considering the spline pair of dual steel plates and friction plates are established. Considering that the wet clutch has multiple spline pairs, an equivalent model of the number of teeth and the equivalent model of the tooth width were proposed, and the Runge-Kutta numerical method was used for the wet clutch for these two models.

Findings

The research results show that the equal tooth number model has greater meshing stiffness and smaller fluctuation than the constant tooth width model, which shows that increasing the meshing stiffness of the system is beneficial to reduce system fluctuation and improve system stability.

Research limitations/implications

The friction plate has the system that multiple splines are independent of each other, which is relatively complicated. Therefore, an equivalent calculation is performed on multiple pairs of steel plates (friction plates) to simplify the calculation of the spline pairs.

Social implications

This paper provides a theoretical basis for further dynamic characteristics analysis of wet clutch and reducing fluctuation of speed and torque.

Originality/value

Dynamic equation considering the spline pair of the dual steel plates and the friction plates is established to study the vibration characteristics of the wet clutch and the dynamic load characteristics of the spline pair, etc.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0078/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2023

Yiwei Wang, Run Liu, Ruohan Sun and Zewei Xu

The paper aims to find the correlation between the microparameters and the macroparameters of the soil. The study aims to calibrate the macroscale and microscale parameters of…

Abstract

Purpose

The paper aims to find the correlation between the microparameters and the macroparameters of the soil. The study aims to calibrate the macroscale and microscale parameters of rolling resistance contact models to successfully apply the discrete element method to do some research of the geotechnical problem.

Design/methodology/approach

The paper opted for an exploratory study using the PFC3D to simulate the triaxial tests that include more than 50 cases and the coupling analysis method, which considering several effect of various factors.

Findings

The paper provides a quantitative relationship between the macroparameters and microparameters of the rolling resistance linear model and a method for fast calibration of macroscopic parameters is proposed and verified by a triaxial test example.

Originality/value

This paper provides the quantitative relationship of micro and macroparameters in the rolling resistance linear model by studying a single factor and considering the coupling effect of various factors and a fast method for the calibration of microparameters based on the rolling resistance linear model is proposed.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 6 of 6