Search results

1 – 10 of 10
Article
Publication date: 30 April 2024

Baoxu Tu, Yuanfei Zhang, Kang Min, Fenglei Ni and Minghe Jin

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction…

Abstract

Purpose

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction methods: handcrafted features, convolutional features and autoencoder features. Subsequently, these features were mapped to contact locations through a contact location regression network. Finally, the network performance was evaluated using spherical fittings of three different radii to further determine the optimal feature extraction method.

Design/methodology/approach

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image.

Findings

This research indicates that data collected by probes can be used for contact localization. Introducing a batch normalization layer after the feature extraction stage significantly enhances the model’s generalization performance. Through qualitative and quantitative analyses, the authors conclude that convolutional methods can more accurately estimate contact locations.

Originality/value

The paper provides both qualitative and quantitative analyses of the performance of three contact localization methods across different datasets. To address the challenge of obtaining accurate contact locations in quantitative analysis, an indirect measurement metric is proposed.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 April 2024

Jacqueline Humphries, Pepijn Van de Ven, Nehal Amer, Nitin Nandeshwar and Alan Ryan

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored…

Abstract

Purpose

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored using lasers. However, lasers cannot distinguish between human and non-human objects in the robot’s path. Stopping or slowing down the robot when non-human objects approach is unproductive. This research contribution addresses that inefficiency by showing how computer-vision techniques can be used instead of lasers which improve up-time of the robot.

Design/methodology/approach

A computer-vision safety system is presented. Image segmentation, 3D point clouds, face recognition, hand gesture recognition, speed and trajectory tracking and a digital twin are used. Using speed and separation, the robot’s speed is controlled based on the nearest location of humans accurate to their body shape. The computer-vision safety system is compared to a traditional laser measure. The system is evaluated in a controlled test, and in the field.

Findings

Computer-vision and lasers are shown to be equivalent by a measure of relationship and measure of agreement. R2 is given as 0.999983. The two methods are systematically producing similar results, as the bias is close to zero, at 0.060 mm. Using Bland–Altman analysis, 95% of the differences lie within the limits of maximum acceptable differences.

Originality/value

In this paper an original model for future computer-vision safety systems is described which is equivalent to existing laser systems, identifies and adapts to particular humans and reduces the need to slow and stop systems thereby improving efficiency. The implication is that computer-vision can be used to substitute lasers and permit adaptive robotic control in human–robot collaboration systems.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 25 March 2024

Xiaoxia Zhang, Jin Zhang, Peiyan Du and Guohe Wang

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective…

Abstract

Purpose

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective evaluation scores and physical index of KES, explore the cognitive mechanism of the transformation of tactile sensation into neural impulses triggered by subtle mechanical stimuli such as material, texture, density and morphology in fabrics. By combining subjective evaluation of fabric tactile sensation, objective physical properties of fabrics and objective neurobiological signals, explore the neurophysiological mechanism of tactile cognition and the signal characteristics and time process of tactile information processing.

Design/methodology/approach

The ERP technology was first proposed by a British psychologist named Grey Walter. It is an imaging technique of noninvasive brain cognition, whose potential changes are related to the human physical and mental activities. ERP is different from electroencephalography (EEG) and evoked potentials (EP) on the fact that it cannot only record stimulated physical information which is transmitted to brain, but also response to the psychological activities which related to attention, identification, comparison, memory, judgment and cognition as well as to human’s neural physiological changes which are caused by cognitive process of the feeling by stimulation.

Findings

According to potential changes in the cerebral cortex evoked by touching four types of silk fabrics, human brain received the physical stimulation in the early stage (50 ms) of fabrics handle evaluation, and the P50 component amplitude showed negative correlation with fabric smoothness sensations. Around 200 ms after tactile stimulus onset, the amplitude of P200 component show positive correlation with the softness sensation of silk fabrics. The relationship between the amplitude of P300 and the sense of smoothness and softness need further evidence to proof.

Originality/value

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective evaluation scores and physical index of KES, the results shown that the maximum amplitude of P50 component evoked by fabric touching is related to the fabrics’ smoothness and roughness emotion, which means in the early stage processing of tactile sensation, the rougher fabrics could arouse more attention. In addition, the amplitude of P200 component shows positive correlation with the softness sensation of silk fabrics.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 February 2024

Enrique Bigne, Aline Simonetti, Jaime Guixeres and Mariano Alcaniz

This research analyses the searching, interacting and purchasing behavior of shoppers seeking semidurable and fast-moving consumer goods in an immersive virtual reality (VR…

Abstract

Purpose

This research analyses the searching, interacting and purchasing behavior of shoppers seeking semidurable and fast-moving consumer goods in an immersive virtual reality (VR) store, showing how physical examinations and visual inspections relate to purchases.

Design/methodology/approach

Around 60 participants completed two forced-purchase tasks using a head-mounted display with visual and motor-tracking systems. A second study using a pictorial display of the products complemented the VR study.

Findings

The findings indicate differences in shopping behavior for the two product categories, with semidurable goods requiring greater inspection and deliberation than fast-moving consumer goods. In addition, visual inspection of the shelf and products was greater than a physical examination through virtual handling for both product categories. The paper also presents relationships between visual inspections and product interactions during the searching stage of purchase decisions.

Originality/value

The research consists of two types of implicit measures in this study: eye-tracking and hand-product interactions. This study reveals the suitability of implicit measures for evaluating consumer behavior in VR stores.

Details

International Journal of Retail & Distribution Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 23 April 2024

Jiwon Chung, Hyunbin Won, Hannah Lee, Soah Park, Hyewon Ahn, Suhyun Pyeon, Jeong Eun Yoon and Sumin Koo

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user…

Abstract

Purpose

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user satisfaction.

Design/methodology/approach

This study selected fabrics and materials for the suit platform through material performance tests. Two anchoring structure designs, 11-type and X-type are compared with regular clothing under control conditions. To evaluate the comfort level of the wearable suit platform, a satisfaction survey and electroencephalogram (EEG) measurements are conducted to triangulate the findings.

Findings

The 11-type exhibited higher values in comfort indicators such as α, θ, α/High-β and lower values in concentration or stress indicators such as β, ϒ, sensorimotor rhythm (SMR)+Mid-β/θ, and a spectral edge frequency of 95% compared to the X-type while walking. The 11-type offers greater comfort and satisfaction compared to the X-type when lifting based on the EEG measurements and the participants survey.

Originality/value

It is recommended to implement the 11-type when designing wearable suit platforms. These findings offer essential data on wearability, which can guide the development of soft wearable robots.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 April 2024

Arpit Sharma, Benjamin P. Dean and James Bezjian

The objective of this study is to address this central question: “What role do ICTs play in reducing poverty?”

Abstract

Purpose

The objective of this study is to address this central question: “What role do ICTs play in reducing poverty?”

Design/methodology/approach

First, in this study, we defined poverty in terms of its roots within health, economic development and education. Then, we conducted a systematic review of the information and communication technologies (ICTs) literature. From our analysis, we proposed a series of subsidiary questions and in-depth answers about the impact of ICTs on alleviating health-related, economic and educational causes of poverty.

Findings

This study observed positive effects of ICTs on healthcare, economic and educational dynamics and concluded that the development of more advanced infrastructure and greater access to such technology can amplify that impact.

Originality/value

This article explains how applications of ICT across sectors can substantially enhance quality of life and give people an opportunity to take control of their health-related, economic and educational futures. This study uniquely affords an integrative analysis of research and new thought about how to integrate key ICTs for more effective initiatives and investments to reduce poverty.

Details

Journal of Strategy and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-425X

Keywords

Article
Publication date: 2 April 2024

Yi Liu, Rui Ning, Mingxin Du, Shuanghe Yu and Yan Yan

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork…

Abstract

Purpose

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork production, the development of efficient and robust meat cutting algorithms are hot issues. The uncertain and dynamic nature of the online porcine belly cutting imposes a challenge for the robot to identify and cut efficiently and accurately. Based on the above challenges, an online porcine belly cutting method using 3D laser point cloud is proposed.

Design/methodology/approach

The robotic cutting system is composed of an industrial robotic manipulator, customized tools, a laser sensor and a PC.

Findings

Analysis of experimental results shows that by comparing with machine vision, laser sensor-based robot cutting has more advantages, and it can handle different carcass sizes.

Originality/value

An image pyramid method is used for dimensionality reduction of the 3D laser point cloud. From a detailed analysis of the outward and inward cutting errors, the outward cutting error is the limiting condition for reducing the segments by segmentation algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 12 March 2024

Cristina Mele and Tiziana Russo-Spena

In this article, we reflect on how smart technology is transforming service research discourses about service innovation and value co-creation. We adopt the concept of technology…

Abstract

Purpose

In this article, we reflect on how smart technology is transforming service research discourses about service innovation and value co-creation. We adopt the concept of technology smartness’ to refer to the ability of technology to sense, adapt and learn from interactions. Accordingly, we seek to address how smart technologies (i.e. cognitive and distributed technology) can be powerful resources, capable of innovating in relation to actors’ agency, the structure of the service ecosystem and value co-creation practices.

Design/methodology/approach

This conceptual article integrates evidence from the existing theories with illustrative examples to advance research on service innovation and value co-creation.

Findings

Through the performative utterances of new tech words, such as onlife and materiality, this article identifies the emergence of innovative forms of agency and structure. Onlife agency entails automated, relational and performative forms, which provide for new decision-making capabilities and expanded opportunities to co-create value. Phygital materiality pertains to new structural features, comprised of new resources and contexts that have distinctive intelligence, autonomy and performativity. The dialectic between onlife agency and phygital materiality (structure) lies in the agencement of smart tech–enabled value co-creation practices based on the notion of becoming that involves not only resources but also actors and contexts.

Originality/value

This paper proposes a novel conceptual framework that advances a tech-based ecology for service ecosystems, in which value co-creation is enacted by the smartness of technology, which emerges through systemic and performative intra-actions between actors (onlife agency), resources and contexts (phygital materiality and structure).

Details

Journal of Service Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-5818

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 April 2024

Yingying Yu, Wencheng Su, Zhangping Lu, Guifeng Liu and Wenjing Ni

Spatial olfactory design in the library appears to be a practical approach to enhance the coordination between architectural spaces and user behaviors, shape immersive activity…

Abstract

Purpose

Spatial olfactory design in the library appears to be a practical approach to enhance the coordination between architectural spaces and user behaviors, shape immersive activity experiences and shape immersive activity experiences. Therefore, this study aims to explore the association between the olfactory elements of library space and users’ olfactory perception, providing a foundation for the practical design of olfactory space in libraries.

Design/methodology/approach

Using the olfactory perception semantic differential experiment method, this study collected feedback on the emotional experience of olfactory stimuli from 56 participants in an academic library. From the perspective of environmental psychology, the dimensions of pleasure, control and arousal of users’ olfactory perception in the academic library environment were semantically and emotionally described. In addition, the impact of fatigue state on users’ olfactory perception was analyzed through statistical methods to explore the impact path of individual physical differences on olfactory perception.

Findings

It was found that users’ olfactory perception in the academic library environment is likely semantically described from the dimensions of pleasure, arousal and control. These dimensions mutually influence users’ satisfaction with olfactory elements. Moreover, there is a close correlation between pleasure and satisfaction. In addition, fatigue states may impact users’ olfactory perception. Furthermore, users in a high-fatigue state may be more sensitive to the arousal of olfactory perception.

Originality/value

This article is an empirical exploration of users’ perception of the environmental odors in libraries. The experimental results of this paper may have practical implications for the construction of olfactory space in academic libraries.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Access

Year

Last 3 months (10)

Content type

Earlycite article (10)
1 – 10 of 10