Search results

1 – 10 of 72
Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1107

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 26 March 2024

Haichao Wang, Xiaoqiang Liu, Zhanjiang Li, Li Chen, Pinqiang Dai and Qunhua Tang

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Abstract

Purpose

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Design/methodology/approach

Cyclic oxidation method was used to obtain the oxidation kinetic profile and oxidation rate. The microstructures of the surface and cross section of the samples after oxidation were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM).

Findings

The results show that the microstructure of the alloy mainly consisted of FCC (Face-centered Cubic Structure) main phase and carbides (M7C3, M23C6 and TiC). With the increase of Ti and C content, the microhardness, strength and oxidation resistance of the alloy were effectively improved. After oxidation at a constant temperature of 800 °C for 100 h, the preferential oxidation of chromium in the chromium carbide determined the early formation of dense chromium oxide layers compared to the HEAs substrate, resulting in the optimal oxidation resistance of the TC30 alloy.

Originality/value

More precipitated CrC can preferentially oxidize and rapidly form a dense Cr2O3 layer early in the oxidation, which will slow down the further oxidation of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 April 2024

Sixian Rao, Changwei Zhang, Fei Zhao, Lei Bao and Xiaoyi Wang

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Abstract

Purpose

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Design/methodology/approach

Corrosion of metals would be aggravated by CDI under applied stress. Notably, the presence of nitrogen in 316LN austenitic stainless steel (SS) would enhance the corrosion resistance compared to the nitrogen-absent 316L SS. To clarify the CDI behaviors, electrochemical corrosion experiments were performed on 316LN specimens under different applied stress levels. Complementary analyses, including three-dimensional morphological examinations by KH-7700 digital microscope and scanning electron microscopy coupled with energy dispersive spectroscopy, were conducted to investigate the macroscopic and microscopic corrosion morphology and to characterize the composition of corrosion products within pits. Furthermore, ion chromatography was used to analyze the solution composition variations after immersion corrosion tests of 316LN in a 6 wt.% FeCl3 solution compared to original FeCl3 solution. Electrochemical experiment results revealed the linear decrease in free corrosion potential with increasing applied stress. Electrochemical impedance spectroscopy results indicated that high tensile stress level damaged the integrity of passivation film, as evidenced by the remarkable reduction in electrochemical impedance. Ion chromatography analyses proved the concentrations increase of NO3 and NH4+ ion concentrations in the corrosion media after corrosion tests.

Findings

The enhanced corrosion resistance of 316LN SS is attributable to the presence of nitrogen.

Research limitations/implications

The scope of this study is confined to the influence of tensile stress on the electrochemical corrosion of 316LN at ambient temperatures; it does not encompass the potential effects of elevated temperatures or compressive stress.

Practical implications

The resistance to stress electrochemical corrosion in SS may be enhanced through nitrogen alloying.

Originality/value

This paper presents a systematic investigation into the stress electrochemical corrosion of 316LN, marking the inaugural study of its impact on corrosion behaviors and underlying mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 April 2024

Shahriar Abubakri, Pritpal S. Mangat, Konstantinos Grigoriadis and Vincenzo Starinieri

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable…

Abstract

Purpose

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable. Accelerated curing of concrete under MC can contribute to the decarbonisation of the environment and provide economies in construction in several ways such as reducing construction time, energy efficiency, lower cement content, lower carbonation risk and reducing emissions from equipment.

Design/methodology/approach

The paper investigates moisture loss and pore properties of six cement-based proprietary concrete repair materials subjected to MC. The impact of MC on these properties is critically important for its successful implementation in practice and current literature lacks this information. Specimens were microwave cured for 40–45 min to surface temperatures between 39.9 and 44.1 °C. The fast-setting repair material was microwave cured for 15 min to 40.7 °C. MC causes a higher water loss which shows the importance of preventing drying during MC and the following 24 h.

Findings

Portland cement-based normal density repair mortars, including materials incorporating pfa and polymer latex, benefit from the thermal effect of MC on hydration, resulting in up to 24% reduction in porosity relative to normal curing. Low density and flowing repair materials suffer an increase in porosity up to 16% due to MC. The moisture loss at the end of MC and after 24h is related to the mix water content and porosity, respectively.

Originality/value

The research on the application of MC for rapid repair of concrete is original. The research was funded by the European commission following a very rigorous and competitive review process which ensured its originality. Original data on the parameters of porosity and moisture loss under MC are provided for different generic cementitious repair materials which have not been studied before. Application of MC to concrete construction especially in cold climates will provide environmental, economic and energy benefits.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 19 May 2022

Christopher Amoah and Jeanne Smith

This study aims to examine the challenges for green retrofitting implementation in existing residential buildings to lower the running cost and achieve a better energy-efficient…

4485

Abstract

Purpose

This study aims to examine the challenges for green retrofitting implementation in existing residential buildings to lower the running cost and achieve a better energy-efficient system.

Design/methodology/approach

This study adopted a qualitative approach by interviewing conveniently selected 16 construction professionals, made up of architects, quantity surveyors and engineers. Data received were analysed using the content analysis method.

Findings

The findings revealed that the main barriers to incorporating green retrofitting in the existing residential buildings as the nature of the existing structures, limited knowledge, not being a priority and high costs involved in the process. Moreover, other factors influencing property developers’ decision to apply energy-efficient principles in a residential home include cost (initial capital and maintenance), level of knowledge, nature of the climate in the area, local legislation, more independence and increasing the property’s market value and environmental aspect.

Research limitations/implications

This study is limited to South Africa; thus, the literature available was limited.

Practical implications

People’s perceptions, either wrong or correct, affect their ability to make an informed decision to adopt green retrofitting principles, thereby denying them the opportunity to reap the associated benefits. Therefore, there is an urgent need for the construction industry stakeholders and government to increase educational opportunities for property owners on the importance of green retrofitting.

Originality/value

This study provides the occupants with the possible barriers and problem areas with implementing these principles. They will thus make an informed decision when implementing sustainable design methods.

Details

Journal of Facilities Management , vol. 22 no. 2
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 72