Search results

1 – 7 of 7
Article
Publication date: 25 January 2024

Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R. and Boomadevi P.

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental…

Abstract

Purpose

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.

Design/methodology/approach

Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.

Findings

From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.

Originality/value

The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2024

Zejian Huang, Yihua Cao and Yanyang Wang

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight…

Abstract

Purpose

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight safety. Taking a typical example, this paper aims to investigate the aerodynamic and rotor trim characteristics of the UH-60 helicopter in sandy environments.

Design/methodology/approach

A computational study is conducted to simulate the air-sand flow over airfoils based on the Euler–Lagrange framework. The simulation uses the S-A turbulence model and the two-way momentum coupling methodology. Additionally, the trim characteristics of the UH-60 rotor are calculated based on the isolated rotor trim algorithm.

Findings

The simulation results show that air-sand flow significantly affects the aerodynamic characteristics of the SC1095 airfoil and the SC1094R8 airfoil. The presence of sand particles leads to a decrease in lift and an increase in drag. The calculation results of the UH-60 helicopter rotor indicate that the thrust decreases and the torque increases in the sandy environment. To maintain a steady forward flight in sandy environments, it is necessary to increase the collective pitch and the longitudinal cyclic pitch.

Originality/value

In this paper, the aerodynamic characteristics of airfoils and the trim characteristics in the air-sand flow of the UH-60 helicopter are discussed, which might be a new view to analyse the impact of sandy environments on helicopter safety and manoeuvring.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 September 2023

Xiaohan Xu, Xudong Huang, Ke Zhang and Ming Zhou

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method…

Abstract

Purpose

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method that enables a machine to learn how to design it.

Design/methodology/approach

The airfoil design process was solved using the reinforcement learning (RL) method. An intellectual method based on a modified deep deterministic policy gradient (DDPG) algorithm was implemented. The new method was applied to agents to learn the design policy under dynamic constraints. The agents explored the design space with the help of a surrogate model and airfoil parameterization.

Findings

The agents successfully learned to design the airfoils. The loss coefficients of a controlled diffusion airfoil improved by 1.25% and 3.23% in the two- and four-dimensional design spaces, respectively. The agents successfully learned to design under various constraints. Additionally, the modified DDPG method was compared with a genetic algorithm optimizer, verifying that the former was one to two orders of magnitude faster in policy searching. The NACA65 airfoil was redesigned to verify the generalization.

Originality/value

It is feasible to consider the compressor design as an RL problem. Trained agents can determine and record the design policy and adapt it to different initiations and dynamic constraints. More intelligence is demonstrated than when traditional optimization methods are used. This methodology represents a new, small step toward the intelligent design of compressors.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 March 2023

Jinghui Deng, Qiyou Cheng and Xing Lu

Helicopter fuselage vibration prediction is important to keep a safety and comfortable flight process. The helicopter vibration mechanism model is difficult to meet of demand for…

Abstract

Purpose

Helicopter fuselage vibration prediction is important to keep a safety and comfortable flight process. The helicopter vibration mechanism model is difficult to meet of demand for accurate vibration prediction. Thus, the purpose of this paper is to develop an intelligent algorithm for accurate helicopter fuselage vibration analysis.

Design/methodology/approach

In this research, a novel weighted variational mode decomposition (VMD)- extreme gradient boosting (xgboost) helicopter fuselage vibration prediction model is proposed. The vibration data is decomposed and reconstructed by the signal clustering results. The vibration response is predicted by xgboost algorithm based on the reconstructed data. The information transfer order between the controllable flight data and flight attitude are analyzed.

Findings

The mean absolute percentage error (MAPE), root mean square error (RMSE) and mean absolute error (MAE) of the proposed weighted VMD-xgboost model are decreased by 6.8%, 31.5% and 32.8% compared with xgboost model. The established weighted VMD-xgboost model has the highest prediction accuracy with the lowest mean MAPE, RMSE and MAE of 4.54%, 0.0162, and 0.0131, respectively. The attitude of horizontal tail and cycle pitch are the key factors to vibration.

Originality/value

A novel weighted VMD-xgboost intelligent prediction methods is proposed. The prediction effect of xgboost model is highly improved by using the signal-weighted reconstruction technique. In addition, the data set used is collected from actual helicopter flight process.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 December 2022

Mohamed Arif Raj Mohamed, Ketu Satish Kumar Reddy and Somaraju Sai Sri Vishnu

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic…

Abstract

Purpose

The high lift devices are effective at high angle of attack to increase the coefficient of lift by increasing the camber. But it affects the low angle of attack aerodynamic performance by increasing the drag. Hence, they have made as a movable device to deploy only at high angles of attack, which increases the design and installation complexities. This study aims to focus on the comparison of aerodynamic efficiency of different conventional leading edge (LE) slat configurations with simple fixed bioinspired slat design.

Design/methodology/approach

This research analyzes the effect of LE slat on aerodynamic performance of CLARK Y airfoil at low and high angles of attack. Different geometrical parameters such as slat chord, cutoff, gap, width and depth of LE slat have been considered for the analysis.

Findings

It has been found that the LE slat configuration with slat chord 30% of airfoil chord, forward extension 8% of chord, dip 3% of chord and gap 0.75% of chord gives higher aerodynamic efficiency (Cl/Cd) than other LE slat configurations, but it affects the low angles of attack aerodynamic performance with the deployed condition. Hence, this optimum slat configuration is further modified by closing the gap between LE slat and the main airfoil, which is inspired by the marine mammal’s nose. Thus increases the coefficient of lift at high angles of attack due to better acceleration over the airfoil nose and as well enhances the aerodynamic efficiency at low angles of attack.

Research limitations/implications

The two-dimensional computational analysis has been done for different LE slat’s geometrical parameters at low subsonic speed.

Practical implications

This bio-inspired nose design improves aerodynamic performance and increases the structural strength of aircraft wing compared to the conventional LE slat. This fixed design avoids the complex design and installation difficulties of conventional movable slats.

Social implications

The findings will have significant impact on the fields of aircraft wing and wind turbine designs, which reduces the design and manufacturing complexities.

Originality/value

Different conventional slat configurations have been analyzed and compared with a simple fixed bioinspired slat nose design at low subsonic speed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 7 of 7