Search results

1 – 10 of 54
Article
Publication date: 15 July 2024

Jian Shi, Zhenhua Ma, Jieyu Dai and Jundong Wang

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings…

Abstract

Purpose

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings under different temperatures and oxidation times.

Design/methodology/approach

In the high-temperature oxidation test, specimens were oxidized at three different temperatures of 850, 980, and 1,100 °C for durations of 10, 20, 50, 100, 200, and 300 h, respectively. In the gas thermal shock test, specimens were pre-oxidized for 10, 20, 50, and 100 h, followed by a high-temperature gas thermal shock test at 1,100 °C.

Findings

In the high-temperature oxidation tests, with increasing oxidation time, the oxidation layer thickened, and the air-film holes diameter decreased. The microstructure of the bond coat transitioned from strip-like to block-like, and internal cracks transformed from numerous and short to larger and deeper. Below the bond coat, a noticeable disappearance layer of strengthening phase appeared, with increasing thickness. The strengthening phase in the substrate transitioned from regular square shapes to circles as temperature increased. In gas thermal shock tests at 1,100 °C, the oxidation weight gain ratio increased with longer pre-oxidation times, whereas the erosion weight loss ratio gradually decreased.

Originality/value

The originality and significance of this study lie in its departure from the typical subjects of high-temperature oxidation and thermal shock tests. Unlike common research targets, this study focuses on IC10 simulative specimens with thermal barrier coatings and air-film holes. Furthermore, it investigates the effects of varying temperatures and oxidation durations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 July 2024

Fatih Huzeyfe Öztürk

Adhesive bonding is critical to the effectiveness and structural integrity of 3D printed components. The purpose of this study is to investigate the effect of joint configuration…

Abstract

Purpose

Adhesive bonding is critical to the effectiveness and structural integrity of 3D printed components. The purpose of this study is to investigate the effect of joint configuration on failure loads to improve the design and performance of single lap joints (SLJs) in 3D printed parts.

Design/methodology/approach

In this study, adherends were fabricated using material extrusion 3D printing technology with polyethylene terephthalate glycol (PETG). A toughened methacrylate adhesive was chosen to bond the SLJs after adherend printing. In this study, response surface methodology (RSM) was used to examine the effect of the independent variables of failure load, manufacturing time and mass on the dependent variable of joint configuration; adherend thickness (3.2, 4.0, 4.8, 5.6, 6.4, and 7.2 mm) and overlap lengths (12.7, 25.4, 38.1, and 50.8 mm) of 3D printed PETG SLJs.

Findings

The strength of the joints improved significantly with the increase in overlap length and adherend thickness, although the relationship was not linear. The maximum failure load occurred with a thickness of 7.2 mm and an overlap of 50.8 mm, whilst the minimum failure load was determined with a thickness of 3.2 mm and an overlap of 12.7 mm. The RSM findings show that the optimum failure load was achieved with an adherend thickness of 3.6 mm and an overlap length of 37.9 mm for SLJ.

Originality/value

This study provides insight into the optimum failure load for 3D printed SLJs, reducing SLJ production time and mass, producing lightweight structures due to the nature of 3D printing, and increasing the use of these parts in load-bearing applications.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 September 2024

Abhishek Shrivastava, Anand Kumar S. and Samrat Rao

This study used an indentation-based mechanical testing framework for the mechanical characterization of laser powder bed fusion (LPBF) processed Inconel 718 on a wrought Inconel…

Abstract

Purpose

This study used an indentation-based mechanical testing framework for the mechanical characterization of laser powder bed fusion (LPBF) processed Inconel 718 on a wrought Inconel 718 substrate. The purpose of the paper is to investigate the effectiveness of the indentation-based approach for localized mechanical evaluation.

Design/methodology/approach

The LPBF-processed wrought substrate was sectioned into three sections for microstructural and mechanical characterization. A 3D heat source model was used for the thermal analysis of the interface region. The developed interface region is probed using the Knoop hardness indenter in different orientations to determine the textural anisotropy and mechanical behavior of the region.

Findings

LPBF process develops a melted interface zone (MIZ) at the deposition-substrate interface. The MIZ exhibited a coarse grain structure region along with a larger primary dendritic arm spacing (PDAS), signifying a slower cooling rate. FE modeling of the LPBF process reveals heat accumulation in the substrate along with intrinsic heat treatment (IHT) induced due to layer-wise processing. The obtained yield locus shows strong anisotropy in the deposition region, whereas reduced anisotropy with a nearly uniform ellipse locus for the MIZ regions. This reduced anisotropy is attributable to IHT and heat accumulation in the substrate.

Originality/value

An alternative localized mechanical characterization tool has been investigated in this work. The approach proved sensitive to thermal variations during LPBF processing in an isolated region which extends its suitability to variable geometry parts. Moreover, the approach could serve as a screening tool for parts made from dissimilar metals.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2024

R. Rajaraman

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the…

Abstract

Purpose

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the irreversible Michaelis-Menten kinetic process within immobilised enzymes through advanced mathematical modelling.

Design/methodology/approach

Mathematical models were developed based on reaction-diffusion equations incorporating nonlinear variables associated with Michaelis-Menten kinetics. This research introduces fractional derivatives to investigate enzyme reaction kinetics, addressing a significant gap in the existing literature. A novel approximation method, based on the independent polynomials of the complete bipartite graph, is employed to explore solutions for substrate concentration and effectiveness factor across a spectrum of parameter values. The analytical solutions generated through the bipartite polynomial approximation method (BPAM) are rigorously tested against established methods, including the Bernoulli wavelet method (BWM), Taylor series method (TSM), Adomian decomposition method (ADM) and fourth-order Runge-Kutta method (RKM).

Findings

The study identifies two main findings. Firstly, the behaviour of dimensionless substrate concentration with distance is analysed for planar, cylindrical and spherical catalysts using both integer and fractional order Michaelis-Menten modelling. Secondly, the research investigates the variability of the dimensionless effectiveness factor with the Thiele modulus.

Research limitations/implications

The study primarily focuses on mathematical modelling and theoretical analysis, with limited experimental validation. Future research should involve more extensive experimental verification to corroborate the findings. Additionally, the study assumes ideal conditions and uniform catalyst properties, which may not fully reflect real-world complexities. Incorporating factors such as mass transfer limitations, non-uniform catalyst structures and enzyme deactivation kinetics could enhance the model’s accuracy and broaden its applicability. Furthermore, extending the analysis to include multi-enzyme systems and complex reaction networks would provide a more comprehensive understanding of biocatalytic processes.

Practical implications

The validated bipartite polynomial approximation method presents a practical tool for optimizing enzyme reactor design and operation in industrial settings. By accurately predicting substrate concentration and effectiveness factor, this approach enables efficient utilization of immobilised enzymes within porous catalysts. Implementation of these findings can lead to enhanced process efficiency, reduced operating costs and improved product yields in various biocatalytic applications such as pharmaceuticals, food processing and biofuel production. Additionally, this research fosters innovation in enzyme immobilisation techniques, offering practical insights for engineers and researchers striving to develop sustainable and economically viable bioprocesses.

Social implications

The advancement of enzyme immobilisation techniques holds promise for addressing societal challenges such as sustainable production, environmental protection and healthcare. By enabling more efficient biocatalytic processes, this research contributes to reducing industrial waste, minimizing energy consumption and enhancing access to pharmaceuticals and bio-based products. Moreover, the development of eco-friendly manufacturing practices through biocatalysis aligns with global efforts towards sustainability and mitigating climate change. The widespread adoption of these technologies can foster a more environmentally conscious society while stimulating economic growth and innovation in biotechnology and related industries.

Originality/value

This study offers a pioneering approximation method using the independent polynomials of the complete bipartite graph to investigate enzyme reaction kinetics. The comprehensive validation of this method through comparison with established solution techniques ensures its reliability and accuracy. The findings hold promise for advancing the field of biocatalysts and provide valuable insights for designing efficient enzyme reactors.

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1427

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 September 2024

Jian Hou, Chenyang Liu, Han Wang, Zilin Li, Guosheng Huang, Li Ma and Bo Jiang Ma

This paper aims to control the deformation of a thin wall CrZrCu cylinder components (wall thickness 5 mm, diameter 400 mm) during thermal spray alumina-titania (AT13) coating by…

Abstract

Purpose

This paper aims to control the deformation of a thin wall CrZrCu cylinder components (wall thickness 5 mm, diameter 400 mm) during thermal spray alumina-titania (AT13) coating by adjusting the spray parameters without deteriorating its quality evidently.

Design/methodology/approach

The deformation was controlled by lowering the temperature of the component in the way of adjusting the spray parameters. The main parameters adjust included extending the spraying distance, from normally 120 mm to 140 mm, decreasing plasma power from 50to 42 kW. An alumina-titanium (AT13) ceramic coating was chosen for protecting the substrate from corrosion. Microscopic morphology and phase analysis, insulation resistance testing, neutral salt test and electrochemical method were used to analyze the anti-corrosion and insulation performances of the coating.

Findings

The results indicate that, after adjusting the spraying parameters, the coating has a relatively high porosity, with an average value of 8.96 ± 0.77%. The bonding strength of the coating is relatively low, with an average value of 17.69 ± 0.85 MPa. However, after sealing, the polarization resistance of the coating in seawater can be maintained above 6.25 × 106 Ω.cm2 for an extended period. The coating has a high resistance (=1.1 M Ω), and there is no apparent galvanic corrosion when contacted with TC4 alloy. Additionally, analysis of corrosion products on the sample surface reveals that the samples with sprayed alumina-titanium ceramic show no copper corrosion products on the surface, and the coating remains intact, effectively isolating the corrosive medium.

Originality/value

By adjusting the spraying parameters, the deformation of the cylinder thin-walled component can be effectively controlled, making the φ 400 × 392 mm (thickness 5 mm) CrZrCu cylinder com-ponent with a maximum diameter deformation of only 0.14 mm. The satisfactory corrosion performances can be achieved under adjusting spraying parameters, which can guarantee the application of ceramic coating for weapon launching system of naval ships.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 May 2024

Chong Zhang, Jiayi Xiang and Qifan Wen

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly…

37

Abstract

Purpose

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly corrosion-resistant coatings is needed to extend the service life of the columns.

Design/methodology/approach

This study aims to compare the corrosion resistance of ST-Cr3C2-NiCr (sealed treatment Cr3C2-NiCr) coatings with industrially applied chromium plating. The corrosion failure mechanism of the coatings was investigated.

Findings

The results demonstrated that the ST-Cr3C2-NiCr coatings exhibited excellent corrosion resistance. After sealing treatment, the corrosion potential of Cr3C2-NiCr coatings was −0.215 V, and the corrosion current density of Cr3C2-NiCr coatings was lower than that of the plated parts.

Practical implications

ST-Cr3C2-NiCr coatings prepared by supersonic atmospheric plasma spraying could provide excellent corrosion resistance in the coal industry.

Originality/value

The low porosity and the presence of the NiCr phase were crucial factors contributing to the preferable corrosion resistance exhibited by the ST-Cr3C2-NiCr coatings. The corrosive process of the coatings involved layer-by-layer delamination of surface oxide film, sub-surface pitting, formation and degradation of sub-surface passive film, as well as severe block-like delamination.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 September 2024

Guotao Zhang, Zan Zhang, Zhaochang Wang, Yanhong Sun, Baohong Tong and Deyu Tu

The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating…

Abstract

Purpose

The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating function of the porous surface. To reveal the repair mechanism of oil film, it is necessary to understand the flow characteristics of oil in micropores. The purpose of this study guides the design of micropore structure to realize the rapid exudation of oil to the porous surface and the rapid repair of the lubricating film.

Design/methodology/approach

In this paper, cylindrical orifice, convergent orifice and divergent orifice were studied. The numerical model of lubricating oil exudation in micropores was established. The distribution characteristics of oil pressure, velocity and three-phase contact line in the process of oil exudation were investigated. The effects of different orifice shapes and orifice structure parameters on the pinning and spreading characteristics of oil droplet were analyzed. Then the internal mechanisms of oil droplet formation and spread on the orifice surface were summarized.

Findings

The results show that during the process of oil exudation, the three-phase contact line of the oil drop is pinned once at the edge of the cylindrical and convergent orifice. Compared with the three orifice structures, the inlet pressure of the oil drop is low, and the oil velocity at the pinning point is stable in the divergent orifice. Resulting in favorable oil exudation. It is easier for oil droplet to depin by appropriately reducing the wall wetting angle, increasing the aperture or controlling the wall inclination angle. Ensure the self-healing and long-lasting lubrication film of porous oil-bearing surfaces.

Practical implications

The effect of pore structure on the flow behavior of lubricating fluid has always been concerned. But the mechanism by which different orifice shape affect the pinning behavior of oil droplets is not yet clear, which is crucial for understanding the self-healing mechanism of oil films on porous surfaces. It is meaningful to analyze the mechanism of oil exudation and spreading on the porous surface of oil in the special orifice, to optimize the design of the orifice structure.

Originality/value

Orifice shape has influence on internal flow field parameters. There is no report on the influence of orifice shape on the film formation process of oil seepage and diffusion from pores. The effects of different orifice shapes and orifice structure parameters on the characteristics of oil droplet pinning and diffusion were studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0118/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Book part
Publication date: 4 October 2024

Martin J. Baptist

This chapter examines the Netherlands’ challenges in safeguarding its low-lying coastline against rising sea levels and the consequences of coastal defense strategies on marine…

Abstract

This chapter examines the Netherlands’ challenges in safeguarding its low-lying coastline against rising sea levels and the consequences of coastal defense strategies on marine life, particularly in relation to SDG14. Sea-level rise necessitates increased soft coastal defense strategies, affecting seafloor areas and marine biodiversity through sand extraction and sand nourishments. The use of hard structures for coastal defense contributes to the loss of natural coastal habitats, raising biodiversity concerns. The chapter explores the potential benefits of artificial hard surfaces as marine habitats, emphasising the need for careful design to prevent ecological problems caused by invasive species. Strategies for enhancing biodiversity on human-made hard substrate structures, including material variations, hole drilling, and adaptations, are discussed. The ecological impact of marine sand extraction is examined, detailing its effects on benthic fauna, sediment characteristics, primary production, and fish and shrimp populations. Solutions proposed include improved design for mining areas, ecosystem-based rules for extraction sites, and ecologically enriched extraction areas. The ecosystem effects of marine sand nourishments are also analysed, considering the impact on habitat suitability for various species. The chemical effects of anaerobic sediment and recovery challenges are addressed. Mitigation measures, such as strategic nourishment location and timing, adherence to local morphology, and technical solutions, are suggested. The chapter underscores the importance of education in Nature-based Solutions and announces the launch of a new BSc programme in Marine Sciences at Wageningen University & Research, integrating social and ecological knowledge to address challenges in seas, oceans, and coastal regions and support SDG14 goals.

Details

Higher Education and SDG14: Life Below Water
Type: Book
ISBN: 978-1-83549-250-5

Keywords

1 – 10 of 54