Search results

1 – 10 of over 22000
Article
Publication date: 12 September 2023

Mingzhen Song, Lingcheng Kong and Jiaping Xie

Rapidly increasing the proportion of installed wind power capacity with zero carbon emission characteristics will help adjust the energy structure and support the realization of…

Abstract

Purpose

Rapidly increasing the proportion of installed wind power capacity with zero carbon emission characteristics will help adjust the energy structure and support the realization of carbon neutrality targets. The intermittency of wind resources and fluctuations in electricity demand has exacerbated the contradiction between power supply and demand. The time-of-use pricing and supply-side allocation of energy storage power stations will help “peak shaving and valley filling” and reduce the gap between power supply and demand. To this end, this paper constructs a decision-making model for the capacity investment of energy storage power stations under time-of-use pricing, which is intended to provide a reference for scientific decision-making on electricity prices and energy storage power station capacity.

Design/methodology/approach

Based on the research framework of time-of-use pricing, this paper constructs a profit-maximizing electricity price and capacity investment decision model of energy storage power station for flat pricing and time-of-use pricing respectively. In the process, this study considers the dual uncertain scenarios of intermittency of wind resources and random fluctuations in power demand.

Findings

(1) Investment in energy storage power stations is the optimal decision. Time-of-use pricing will reduce the optimal capacity of the energy storage power station. (2) The optimal capacity of the energy storage power station and optimal electricity price are related to factors such as the intermittency of wind resources, the unit investment cost, the price sensitivities of the demand, the proportion of time-of-use pricing and the thermal power price. (3) The carbon emission level is affected by the intermittency of wind resources, price sensitivities of the demand and the proportion of time-of-use pricing. Incentive policies can always reduce carbon emission levels.

Originality/value

This paper creatively introduced the research framework of time-of-use pricing into the capacity decision-making of energy storage power stations, and considering the influence of wind power intermittentness and power demand fluctuations, constructed the capacity investment decision model of energy storage power stations under different pricing methods, and compared the impact of pricing methods on optimal energy storage power station capacity and carbon emissions.

Highlights

  1. Electricity pricing and capacity of energy storage power stations in an uncertain electricity market.

  2. Investment strategy of energy storage power stations on the supply side of wind power generators.

  3. Impact of pricing method on the investment decisions of energy storage power stations.

  4. Impact of pricing method, energy storage investment and incentive policies on carbon emissions.

  5. A two-stage wind power supply chain including energy storage power stations.

Electricity pricing and capacity of energy storage power stations in an uncertain electricity market.

Investment strategy of energy storage power stations on the supply side of wind power generators.

Impact of pricing method on the investment decisions of energy storage power stations.

Impact of pricing method, energy storage investment and incentive policies on carbon emissions.

A two-stage wind power supply chain including energy storage power stations.

Details

Industrial Management & Data Systems, vol. 123 no. 11
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 9 March 2012

Malini Natarajarathinam, Jennifer Stacey and Charles Sox

The purpose of this paper is to develop efficient heuristics for determining the route design and inventory management of inbound parts which are delivered for manufacturing…

1404

Abstract

Purpose

The purpose of this paper is to develop efficient heuristics for determining the route design and inventory management of inbound parts which are delivered for manufacturing, assembly, or distribution operations and for which there is limited storage space. The shipment frequencies and quantities are coordinated with the available storage space and the vehicle capacities.

Design/methodology/approach

Two heuristics that generate near optimal solutions are proposed. The first heuristic has an iterative routing phase that maximizes the savings realized by grouping suppliers together into routes without considering the storage constraint and then calculates the pickup frequencies in the second phase to accommodate the storage constraint. The second heuristic iteratively executes a routing and a pickup frequency phase that both account for the storage constraint. A lower bound is also developed as a benchmark for the heuristic solutions.

Findings

Near optimal solutions can be obtained in a reasonable amount of time by utilizing information about the amount of storage space in the route design process.

Practical implications

The traditional emphasis on high vehicle utilization in transportation management can lead to inefficient logistics operations by carrying excess inventory or by using longer, less efficient routes. Route formation and pickup quantities at the suppliers are simultaneously considered, as both are important from a logistics standpoint and are interrelated decisions.

Originality/value

The two proposed heuristics dynamically define seed sets such that the solutions to the capacitated concentrator location problem (CCLP) are accurately estimated. This increased accuracy helps in generating near‐optimal solutions in a practical amount of computing time.

Details

International Journal of Physical Distribution & Logistics Management, vol. 42 no. 2
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 1 January 1988

Wah Ying Hui

Gas storage facilities are expensive and their siting is determined by the customer not the supplier. Accurate determination of optimum capacity is a “must”.

Abstract

Gas storage facilities are expensive and their siting is determined by the customer not the supplier. Accurate determination of optimum capacity is a “must”.

Details

International Journal of Physical Distribution & Materials Management, vol. 18 no. 1
Type: Research Article
ISSN: 0269-8218

Article
Publication date: 5 October 2015

Nyoman Pujawan, Mansur Maturidi Arief, Benny Tjahjono and Duangpun Kritchanchai

In transportation and distribution systems, the shipment decisions, fleet capacity, and storage capacity are interrelated in a complex way, especially when the authors take into…

1709

Abstract

Purpose

In transportation and distribution systems, the shipment decisions, fleet capacity, and storage capacity are interrelated in a complex way, especially when the authors take into account uncertainty of the demand rate and shipment lead time. While shipment planning is tactical or operational in nature, increasing storage capacity often requires top management’s authority. The purpose of this paper is to present a new method to integrate both operational and strategic decision parameters, namely shipment planning and storage capacity decision under uncertainty. The ultimate goal is to provide a near optimal solution that leads to a striking balance between the total logistics costs and product availability, critical in maritime logistics of bulk shipment of commodity items.

Design/methodology/approach

The authors use simulation as research method. The authors develop a simulation model to investigate the effects of various factors on costs and service levels of a distribution system. The model mimics the transportation and distribution problems of bulk cement in a major cement company in Indonesia consisting of a silo at the port of origin, two silos at two ports of destination, and a number of ships that transport the bulk cement. The authors develop a number of “what-if” scenarios by varying the storage capacity at the port of origin as well as at the ports of destinations, number of ships operated, operating hours of ports, and dispatching rules for the ships. Each scenario is evaluated in terms of costs and service level. A full factorial experiment has been conducted and analysis of variance has been used to analyze the results.

Findings

The results suggest that the number of ships deployed, silo capacity, working hours of ports, and the dispatching rules of ships significantly affect both total costs and service level. Interestingly, operating fewer ships enables the company to achieve almost the same service level and gaining substantial cost savings if constraints in other part of the system are alleviated, i.e., storage capacities and working hours of ports are extended.

Practical implications

Cost is a competitive factor for bulk items like cement, and thus the proposed scenarios could be implemented by the company to substantially reduce the transportation and distribution costs. Alleviating storage capacity constraint is obviously an idea that needs to be considered when optimizing shipment planning alone could not give significant improvements.

Originality/value

Existing research has so far focussed on the optimization of shipment planning/scheduling, and considers shipment planning/scheduling as the objective function while treating the storage capacity as constraints. The simulation model enables “what-if” analyses to be performed and has overcome the difficulties and impracticalities of analytical methods especially when the system incorporates stochastic variables exhibited in the case example. The use of efficient frontier analysis for analyzing the simulation results is a novel idea which has been proven to be effective in screening non-dominated solutions. This has provided the authors with near optimal solutions to trade-off logistics costs and service levels (availability), with minimal experimentation times.

Details

International Journal of Physical Distribution & Logistics Management, vol. 45 no. 9/10
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 17 July 2007

Jennifer Stacey, Malini Natarajarathinam and Charles Sox

This paper aims to describe the storage constrained, inbound inventory routeing problem and presents bounds and heuristics for solutions to this problem. It also seeks to analyze…

3277

Abstract

Purpose

This paper aims to describe the storage constrained, inbound inventory routeing problem and presents bounds and heuristics for solutions to this problem. It also seeks to analyze various characteristics of this problem by comparing the solutions generated by the two proposed heuristics with each other and with the lower bound solutions.

Design/methodology/approach

The proposed heuristics use a sequential decomposition strategy for generating solutions for this problem. These heuristics are evaluated on a set of problem instances which are based on an actual application in the automotive manufacturing industry.

Findings

The storage space clearly has a significant effect on both the routeing and inventory decisions, and there are complex and interesting interactions between the problem factors and performance measures.

Practical implications

Facility design decisions for the storage of inbound materials should carefully consider the impact of storage space on transportation and logistics costs.

Originality/value

This problem occurs in a number of different industrial applications while most of the existing literature addresses outbound distribution. Other papers that address similar problems do not consider all of the practical constraints in the problem or do not adequately benchmark and analyze their proposed solutions.

Details

International Journal of Physical Distribution & Logistics Management, vol. 37 no. 6
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 10 August 2022

Xing Yao, Shao-Chao Ma, Ying Fan, Lei Zhu and Bin Su

The ongoing urbanization and decarbonization require deployment of energy storage in the urban energy system to integrate large-scale variable renewable energy (VRE) into the…

Abstract

Purpose

The ongoing urbanization and decarbonization require deployment of energy storage in the urban energy system to integrate large-scale variable renewable energy (VRE) into the power grids. The cost reductions of batteries enable private entities to invest energy storage for energy management whose operating strategy may differ from traditional storage facilities. This study aims to investigate the impacts of energy storage on the power system with different operation strategies. Two strategies are modeled through a simulation-based regional economic power dispatch model. The profit-oriented strategy denotes the storage system operated by private entities for price arbitrage, and the nonprofit-oriented strategy denotes the storage system dispatched by an independent system operator (ISO) for the whole power system optimization. A case study of Jiangsu, China is conducted. The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under a high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity. This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.

Design/methodology/approach

The authors characterize two battery storage operating strategies of profit- and nonprofit-oriented by adopting a simulation-based economic dispatch model. A simulation from 36 years of hourly weather data of wind and solar output from case study of Jiangsu, China is conducted.

Findings

The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity.

Originality/value

This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.

Details

Industrial Management & Data Systems, vol. 122 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 22 January 2024

Md. Tareq Hossain Khondoker, Md. Mehrab Hossain and Ayan Saha

Due to its longer length compared to other construction materials and distinctive stacking patterns, obtaining construction steel bars in congested construction sites with limited…

Abstract

Purpose

Due to its longer length compared to other construction materials and distinctive stacking patterns, obtaining construction steel bars in congested construction sites with limited storage capacity becomes challenging. Lack of storage space in crowded places prompts the need for building steel bar storage choice optimization. Therefore, this study aims to optimize the construction steel bar procurement plan by providing when and how much rebar to order and how to stack different sizes of rebar considering limited storage capacity.

Design/methodology/approach

A novel approach has been presented in this paper by integrating 4D building information modelling (BIM) and mixed-integer linear programming (MILP). This technique uses BIM to retrieve material quantities, including rebar, during the design phase. Following that, activities are scheduled depending on the duration determined by crew productivity data and material quantity. Then, based on the prior price, the price of each unit of rebar is projected for the duration of construction using the exponential smoothing method. After that, the MILP approach is used to generate an optimal steel bar procurement plan for limited storage space following the scheduled rebar-related operations.

Findings

The developed strategy minimizes overall procurement costs and ensures the storage of rebar as per standard guidelines. An optimal rebar procurement and storage plan to construct a six-storied RC frame has been presented in this paper as a demonstrative example to show the effectiveness of the proposed method.

Originality/value

This work partially satisfies a long-sought research need for establishing a comprehensive construction steel bar procurement system, making it a very useful source of information for practitioners and researchers. The proposed method can be used to minimize a key performance limitation that the conventional rebar procurement practice for crowded building sites may experience.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 January 1991

Malcolm Getz

The costs of alternative methods of storing data have changed significantly as electronic systems have evolved. Moreover, we expect the average level of costs to continue falling…

1279

Abstract

The costs of alternative methods of storing data have changed significantly as electronic systems have evolved. Moreover, we expect the average level of costs to continue falling over the next decade as technical change continues. Electronic systems are becoming closer substitutes for traditional ways of storing information in libraries. This issue's column examines the storage capacity of a wide array of representative storage devices in terms of the number of billions of characters or bytes of information—that is, gigabytes of storage—and each system's costs. The cost per gigabyte (GB) of storage varies by several orders of magnitude in ways that have important implications for the evolution of libraries over the next decade.

Details

The Bottom Line, vol. 4 no. 1
Type: Research Article
ISSN: 0888-045X

Open Access
Article
Publication date: 4 June 2021

Matevz Obrecht, Rhythm Singh and Timitej Zorman

This paper aims to forecast the availability of used but operational electric vehicle (EV) batteries to integrate them into a circular economy concept of EVs' end-of-life (EOL…

3203

Abstract

Purpose

This paper aims to forecast the availability of used but operational electric vehicle (EV) batteries to integrate them into a circular economy concept of EVs' end-of-life (EOL) phase. Since EVs currently on the roads will become obsolete after 2030, this study focuses on the 2030–2040 period and links future renewable electricity production with the potential for storing it into used EVs' batteries. Even though battery capacity decreases by 80% or less, these batteries will remain operational and can still be seen as a valuable solution for storing peaks of renewable energy production beyond EV EOL.

Design/methodology/approach

Storing renewable electricity is gaining as much attention as increasing its production and share. However, storing it in new batteries can be expensive as well as material and energy-intensive; therefore, existing capacities should be considered. The use of battery electric vehicles (BEVs) is among the most exciting concepts on how to achieve it. Since reduced battery capacity decreases car manufacturers' interest in battery reuse and recycling is environmentally hazardous, these batteries should be integrated into the future electricity storage system. Extending the life cycle of batteries from EVs beyond the EV's life cycle is identified as a potential solution for both BEVEOL and electricity storage.

Findings

Results revealed a rise of photovoltaic (PV) solar power plants and an increasing number of EVs EOL that will have to be considered. It was forecasted that 6.27–7.22% of electricity from PV systems in scenario A (if EV lifetime is predicted to be 20 years) and 18.82–21.68% of electricity from PV systems in scenario B (if EV lifetime is predicted to be 20 years) could be stored in batteries. Storing electricity in EV batteries beyond EV EOL would significantly decrease the need for raw materials, increase energy system and EV sustainability performance simultaneously and enable leaner and more efficient electricity production and distribution network.

Practical implications

Storing electricity in used batteries would significantly decrease the need for primary materials as well as optimizing lean and efficient electricity production network.

Originality/value

Energy storage is one of the priorities of energy companies but can be expensive as well as material and energy-intensive. The use of BEV is among the most interesting concepts on how to achieve it, but they are considered only when in the use phase as vehicle to grid (V2G) concept. Because reduced battery capacity decreases the interest of car manufacturers to reuse batteries and recycling is environmentally risky, these batteries should be used for storing, especially renewable electricity peaks. Extending the life cycle of batteries beyond the EV's life cycle is identified as a potential solution for both BEV EOL and energy system sustainability, enabling more efficient energy management performance. The idea itself along with forecasting its potential is the main novelty of this paper.

Details

International Journal of Productivity and Performance Management, vol. 71 no. 3
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 1 May 1980

David Ray, John Gattorna and Mike Allen

Preface The functions of business divide into several areas and the general focus of this book is on one of the most important although least understood of these—DISTRIBUTION. The…

1461

Abstract

Preface The functions of business divide into several areas and the general focus of this book is on one of the most important although least understood of these—DISTRIBUTION. The particular focus is on reviewing current practice in distribution costing and on attempting to push the frontiers back a little by suggesting some new approaches to overcome previously defined shortcomings.

Details

International Journal of Physical Distribution & Materials Management, vol. 10 no. 5/6
Type: Research Article
ISSN: 0269-8218

1 – 10 of over 22000