Search results

1 – 10 of 294
Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

537

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 26 December 2023

Mehmet Kursat Oksuz and Sule Itir Satoglu

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response…

1362

Abstract

Purpose

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres and medical staff to save lives effectively.

Design/methodology/approach

This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.

Findings

Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster response within the critical first 72 h.

Originality/value

This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response. The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 29 May 2024

Mohanad Rezeq, Tarik Aouam and Frederik Gailly

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict…

Abstract

Purpose

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict. These security checkpoints have become highly utilized because of the complex security procedures and increased truck traffic, which significantly slow the delivery of relief aid. This paper aims to improve the process at security checkpoints by redesigning the current process to reduce processing time and relieve congestion at checkpoint entrance gates.

Design/methodology/approach

A decision-support tool (clearing function distribution model [CFDM]) is used to minimize the effects of security checkpoint congestion on the entire humanitarian supply network using a hybrid simulation-optimization approach. By using a business process simulation, the current and reengineered processes are both simulated, and the simulation output was used to estimate the clearing function (capacity as a function of the workload). For both the AS-IS and TO-BE models, key performance indicators such as distribution costs, backordering and process cycle time were used to compare the results of the CFDM tool. For this, the Kerem Abu Salem security checkpoint south of Gaza was used as a case study.

Findings

The comparison results demonstrate that the CFDM tool performs better when the output of the TO-BE clearing function is used.

Originality/value

The efforts will contribute to improving the planning of any humanitarian network experiencing congestion at security checkpoints by minimizing the impact of congestion on the delivery lead time of relief aid to the final destination.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 4
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 24 July 2020

Misuk Lee

Over the past two decades, online booking has become a predominant distribution channel of tourism products. As online sales have become more important, understanding booking…

1360

Abstract

Purpose

Over the past two decades, online booking has become a predominant distribution channel of tourism products. As online sales have become more important, understanding booking conversion behavior remains a critical topic in the tourism industry. The purpose of this study is to model airline search and booking activities of anonymous visitors.

Design/methodology/approach

This study proposes a stochastic approach to explicitly model dynamics of airline customers’ search, revisit and booking activities. A Markov chain model simultaneously captures transition probabilities and the timing of search, revisit and booking decisions. The suggested model is demonstrated on clickstream data from an airline booking website.

Findings

Empirical results show that low prices (captured as discount rates) lead to not only booking propensities but also overall stickiness to a website, increasing search and revisit probabilities. From the decision timing of search and revisit activities, the author observes customers’ learning effect on browsing time and heterogeneous intentions of website visits.

Originality/value

This study presents both theoretical and managerial implications of online search and booking behavior for airline and tourism marketing. The dynamic Markov chain model provides a systematic framework to predict online search, revisit and booking conversion and the time of the online activities.

Details

Journal of Tourism Analysis: Revista de Análisis Turístico, vol. 27 no. 2
Type: Research Article
ISSN: 2254-0644

Keywords

Open Access
Article
Publication date: 31 October 2018

Assad Mehmood, Kashif Zia, Arshad Muhammad and Dinesh Kumar Saini

Participatory wireless sensor networks (PWSN) is an emerging paradigm that leverages existing sensing and communication infrastructures for the sensing task. Various environmental…

Abstract

Purpose

Participatory wireless sensor networks (PWSN) is an emerging paradigm that leverages existing sensing and communication infrastructures for the sensing task. Various environmental phenomenon – P monitoring applications dealing with noise pollution, road traffic, requiring spatio-temporal data samples of P (to capture its variations and its profile construction) in the region of interest – can be enabled using PWSN. Because of irregular distribution and uncontrollable mobility of people (with mobile phones), and their willingness to participate, complete spatio-temporal (CST) coverage of P may not be ensured. Therefore, unobserved data values must be estimated for CST profile construction of P and presented in this paper.

Design/methodology/approach

In this paper, the estimation of these missing data samples both in spatial and temporal dimension is being discussed, and the paper shows that non-parametric technique – Kernel Regression – provides better estimation compared to parametric regression techniques in PWSN context for spatial estimation. Furthermore, the preliminary results for estimation in temporal dimension have been provided. The deterministic and stochastic approaches toward estimation in the context of PWSN have also been discussed.

Findings

For the task of spatial profile reconstruction, it is shown that non-parametric estimation technique (kernel regression) gives a better estimation of the unobserved data points. In case of temporal estimation, few preliminary techniques have been studied and have shown that further investigations are required to find out best estimation technique(s) which may approximate the missing observations (temporally) with considerably less error.

Originality/value

This study addresses the environmental informatics issues related to deterministic and stochastic approaches using PWSN.

Details

International Journal of Crowd Science, vol. 2 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

1151

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 16 July 2024

Rabiatu Bonku, Faisal Alkaabneh and Lauren Berrings Davis

Inspired by a food bank distribution operation, this paper aims to study synchronized vehicle routing for equitable and effective food allocation. The primary goal is to improve…

236

Abstract

Purpose

Inspired by a food bank distribution operation, this paper aims to study synchronized vehicle routing for equitable and effective food allocation. The primary goal is to improve operational efficiency while ensuring equitable and effective food distribution among the partner agencies.

Design/methodology/approach

This study introduces a multiobjective Mixed Integer Programming (MIP) model aimed at addressing the complex challenge of effectively distributing food, particularly for food banks serving vulnerable populations in low-income urban and rural areas. The optimization approach described in this paper places a significant emphasis on social and economic considerations by fairly allocating food to food bank partner agencies while minimizing routing distance and waste. To assess the performance of the approach, this paper evaluates three distinct models, focusing on key performance measures such as effectiveness, equity and efficiency. The paper conducts a comprehensive numerical analysis using randomly generated data to gain insights into the trade-offs that arise and provide valuable managerial insights for food bank managers.

Findings

The results of the analysis highlight the models that perform better in terms of equity and effectiveness. Additionally, the results show that restocking the vehicles through the concept of synchronization improves the overall quantity of food allocation to partner agencies, thereby increasing accessibility.

Research limitations/implications

This paper contributes significantly to the literature on optimization approaches in the field of humanitarian logistics.

Practical implications

This study provides food bank managers with three different models, each with a multifaceted nature of trade-offs, to better address the complex challenges of food insecurity.

Social implications

This paper contributes significantly to social responsibility by enhancing the operational efficiency of food banks, ultimately improving their ability to serve communities in need.

Originality/value

To the best of the authors’ knowledge, this paper is the first to propose and analyze this new variant of vehicle routing problems in nonprofit settings.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 27 July 2020

T.M. Pinho, J.P. Coelho, P.M. Oliveira, B. Oliveira, A. Marques, J. Rasinmäki, A.P. Moreira, G. Veiga and J. Boaventura-Cunha

The optimisation of forest fuels supply chain involves several entities actors, and particularities. To successfully manage these supply chains, efficient tools must be devised…

1541

Abstract

The optimisation of forest fuels supply chain involves several entities actors, and particularities. To successfully manage these supply chains, efficient tools must be devised with the ability to deal with stakeholders dynamic interactions and to optimize the supply chain performance as a whole while being stable and robust, even in the presence of uncertainties. This work proposes a framework to coordinate different planning levels and event-based models to manage the forest-based supply chain. In particular, with the new methodology, the resilience and flexibility of the biomass supply chain is increased through a closed-loop system based on the system forecasts provided by a discrete-event model. The developed event-based predictive model will be described in detail, explaining its link with the remaining elements. The implemented models and their links within the proposed framework are presented in a case study in Finland and results are shown to illustrate the advantage of the proposed architecture.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 5 August 2024

James Christopher Westland and Jian Mou

Internet search is a $120bn business that answers lists of search terms or keywords with relevant links to Internet webpages. Only a few companies have sufficient scale to compete…

Abstract

Purpose

Internet search is a $120bn business that answers lists of search terms or keywords with relevant links to Internet webpages. Only a few companies have sufficient scale to compete and thus economics of the process are paramount. This study aims to develop a detailed industry-specific modeling of the economics of internet search.

Design/methodology/approach

The current research develops a stochastic model of the process of Internet indexing, search and retrieval in order to predict expected costs and revenues of particular configurations and usages.

Findings

The models define behavior and economics of parameters that are not directly observable, where it is difficult to empirically determine the distributions and economics.

Originality/value

The model may be used to guide the economics of large search engine operations, including the advertising platforms that depend on them and largely fund them.

Details

Journal of Electronic Business & Digital Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-4214

Keywords

Open Access
Article
Publication date: 9 October 2023

Mingyao Sun and Tianhua Zhang

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing…

Abstract

Purpose

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing process is always accompanied by order splitting and merging; besides, in each stage of the process, there are always multiple machine groups that have different production capabilities and capacities. This paper studies a multi-agent based scheduling architecture for the radio frequency identification (RFID)-enabled semiconductor back-end shopfloor, which integrates not only manufacturing resources but also human factors.

Design/methodology/approach

The architecture includes a task management (TM) agent, a staff instruction (SI) agent, a task scheduling (TS) agent, an information management center (IMC), machine group (MG) agent and a production monitoring (PM) agent. Then, based on the architecture, the authors developed a scheduling method consisting of capability & capacity planning and machine configuration modules in the TS agent.

Findings

The authors used greedy policy to assign each order to the appropriate machine groups based on the real-time utilization ration of each MG in the capability & capacity (C&C) planning module, and used a partial swarm optimization (PSO) algorithm to schedule each splitting job to the identified machine based on the C&C planning results. At last, we conducted a case study to demonstrate the proposed multi-agent based real-time production scheduling models and methods.

Originality/value

This paper proposes a multi-agent based real-time scheduling framework for semiconductor back-end industry. A C&C planning and a machine configuration algorithm are developed, respectively. The paper provides a feasible solution for semiconductor back-end manufacturing process to realize real-time scheduling.

Details

IIMBG Journal of Sustainable Business and Innovation, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8500

Keywords

1 – 10 of 294