Search results

1 – 10 of 90
Article
Publication date: 2 January 2024

Omid Soleymanzadeh and Bahman Hajipour

The purpose of this study is to address why managers enter the excessive market. A comparison of the facts and perceptions of entrants relative to success in the market shows that…

Abstract

Purpose

The purpose of this study is to address why managers enter the excessive market. A comparison of the facts and perceptions of entrants relative to success in the market shows that many entrants are confident about the viability of their businesses and enter the market. Accordingly, the authors simulate market entry decisions to detect behavioral biases.

Design/methodology/approach

The authors adapted the entry decisions simulation method, which is supported by the theoretical foundations of signal detection theory (SDT) and signaling theory. The simulation model is implemented on the Anaconda platform and written in Python 3.

Findings

The results of this study suggest that overestimation relates to excess market entry. Also, the proportion of excess entry under difficult conditions is always higher than under easy conditions.

Practical implications

This research helps managers and firms think about their and their competitors' abilities and evaluate them before entering the market. Policymakers and practitioners can also design programs such as experiential learning to help entrants assess their skills.

Originality/value

So far, no research has investigated the role of overconfidence under different market conditions. Accordingly, this study contributes to the current market entry literature by disentangling the debate between absolute and relative confidence and by considering the role of task difficulty.

Details

Journal of Strategy and Management, vol. 17 no. 2
Type: Research Article
ISSN: 1755-425X

Keywords

Article
Publication date: 9 April 2024

Derek L. Nazareth, Jae Choi and Thomas Ngo-Ye

This paper aims to examine the conditions under which small and medium enterprises (SMEs) invest in security services when they migrate their e-commerce applications to the cloud…

Abstract

Purpose

This paper aims to examine the conditions under which small and medium enterprises (SMEs) invest in security services when they migrate their e-commerce applications to the cloud environment. Using a risk management perspective, the paper assesses the impact of security service pricing, security incident prevalence and virulence to estimate SME security spending at the market level and draw out implications for SMEs and security service providers.

Design/methodology/approach

Security risks are inherently characterized by uncertainty. This study uses a Monte Carlo approach to understand the role of uncertainty in the decision to adopt security services. A model relating key security constructs is assembled based on key constructs from the domain. By manipulating security service costs and security incident types, the model estimates the market-level adoption of services, security incidents and damages incurred, along with measures of their relative dispersion.

Findings

Three key findings emerge from this study. First, adoption of services and protection is higher when tiered security services are provided, indicating that SMEs prefer to choose their security services rather than accept uniformly priced products. Second, SMEs are considered price-sensitive, resulting in a maximum level of spending in the market. Third, results indicate that security incidents and damages can be much higher than the mean in some cases, and this should serve as a cautionary note to SMEs.

Originality/value

Security spending has been modeled at the firm level. Adopting a market-level perspective represents a novel contribution. Additionally, the Monte Carlo approach provides managers with tangible measures of uncertainty, affording additional information and insight when making security service adoption decisions.

Details

Journal of Systems and Information Technology, vol. 26 no. 2
Type: Research Article
ISSN: 1328-7265

Keywords

Article
Publication date: 25 April 2024

Michael Dreyfuss and Gavriel David Pinto

Every business company deals with the dilemma of how much to invest in long-term (LT) versus short-term (ST) problem (LTvST problem). LT operations increase the reputation of the…

Abstract

Purpose

Every business company deals with the dilemma of how much to invest in long-term (LT) versus short-term (ST) problem (LTvST problem). LT operations increase the reputation of the company, and revenue is rewarded in the future. In contrast, ST operations result in immediate rewards. Thus, every organization faces the dilemma of how much to invest in LT versus ST activities. The former deals with the “what” or effectiveness, and the latter deals with the “how” or efficiency. The role of managers is to solve this dilemma; however, they often fail to do so, mainly because of a lack of knowledge. This study aims to propose a dynamic optimal control model that formulates and solves the LTvST problem.

Design/methodology/approach

This study proposes a dynamic optimal control model that formulates and solves the dilemma whether to invest in short- or LT operations.

Findings

This model is illustrated as an example of an academic institute that wants to maximize its reputation. Investing in effectiveness in the academy translates into investing in research, whereas investing in efficiency translates into investing in teaching. Universities and colleges with a good reputation attract stronger candidates and benefit from higher tuition fees. Steady-state conditions and insightful observations were obtained by studying the optimal solution and performing a sensitivity analysis.

Originality/value

To the best of the authors’ knowledge, this paper is the first one to explore the optimal strategy when trying to maximize the short and LT activities of a company and solve the LTvST problem. Furthermore, it is applied on universities where teaching is the ST activity and research the LT activity. The insights gleaned from the application are relevant to many different fields. The authors believe that the paper makes a significant contribution to academic literature and to business managers.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 13 May 2024

Fang Ye and Yunxi Guo

This paper aims to answer the following important questions: Is public debt in Sub-Saharan African (SSA) countries sustainable? What are the determinants of public debt…

Abstract

Purpose

This paper aims to answer the following important questions: Is public debt in Sub-Saharan African (SSA) countries sustainable? What are the determinants of public debt sustainability in these countries, and do these determinants exhibit heterogeneity due to regional, natural resource, and income differences among SSA countries?

Design/methodology/approach

This study analyzes the public debt sustainability in SSA countries using the theoretical model known as the Present Value Budget Constraint (PVBC) model developed by Hamilton and Flavin (1986), and adopts the econometric testing method proposed by Trehan and Walsh (1991). Moreover, to empirically investigate the determinants of public debt sustainability in SSA countries, the System-Generalized Method of Moments (System-GMM) method is applied. Furthermore, this study conducts heterogeneity analysis by categorizing the sample based on different regions, natural resource endowments, and income levels. The data of this study are sourced from the IMF and World Bank databases for 45 SSA countries from 2005 to 2021.

Findings

Findings reveal that public debt in SSA countries is not sustainable in the long run, with factors such as the previous government debt, long-term debt ratio, debt repayment capacity, economic growth rate, inflation rate, export to GDP, and government fiscal deficit rate influencing sustainability. Additionally, the factors exhibit heterogeneity attributed to regional, natural resource, and income variations among SSA countries.

Practical implications

The findings of our study will serve as a catalyst for policymakers in the SSA countries to embrace and sustain robust fiscal consolidation and debt stabilization measures. Moreover, countries with distinct characteristics should implement tailored approaches. Additionally, policymakers in SSA countries should implement economic measures to address public debt issues. These measures include improving the macroeconomic structure, promoting economic transformation and diversification of industries, fostering sustainable economic growth, ensuring price stability, and strengthening resilience against external shocks and debt risks. Specifically, countries endowed with indigenous species, resources, and tourism potential should adopt a well-coordinated strategy that utilizes agriculture, tourism, ecotourism, and the hospitality industry as instruments for sustainable local community and rural development.

Originality/value

Firstly, it assesses the sustainability of public debt and its determinants for countries in SSA, which distinguishes it from previous studies that only focus on either debt sustainability or determinants of debt separately. Secondly, by including multiple SSA countries in the analysis, this study stands out from prior research that predominantly concentrates on specific nations. Thirdly, the utilization of the System-GMM method for analyzing determinants adds a novel dimension to this study, departing from earlier literature primarily focused on debt thresholds. Lastly, the heterogeneity analysis conducted in this study provides an empirical foundation for tailoring policies to different countries, addressing a facet often overlooked in earlier literature.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 December 2022

Ahmed Mohammed, Tarek Zayed, Fuzhan Nasiri and Ashutosh Bagchi

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to…

Abstract

Purpose

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to formulate a pavement resilience index while incorporating asset management and the associated resilience indicators from the authors’ previous research work.

Design/methodology/approach

This paper introduces a set of holistic-based key indicators that reflect municipal infrastructure resiliency. Thenceforth, the indicators were integrated using the weighted sum mean method to form the proposed resilience index. Resilience indicators weights were determined using principal components analysis (PCA) via IBM SPSS®. The developed framework for the PCA was built based on an optimization model output to generate the required weights for the desired resilience index. The output optimization data were adjusted using the standardization method before performing PCA.

Findings

This paper offers a mathematical approach to generating a resilience index for municipal infrastructure. The statistical tests conducted throughout the study showed a high significance level. Therefore, using PCA was proper for the resilience indicators data. The proposed framework is beneficial for asset management experts, where introducing the proposed index will provide ease of use to decision-makers regarding pavement network maintenance planning.

Research limitations/implications

The resilience indicators used need to be updated beyond what is mentioned in this paper to include asset redundancy and structural asset capacity. Using clustering as a validation tool is an excellent opportunity for other researchers to examine the resilience index for each pavement corridor individually pertaining to the resulting clusters.

Originality/value

This paper provides a unique example of integrating resilience and asset management concepts and serves as a vital step toward a comprehensive integration approach between the two concepts. The used PCA framework offers dynamic resilience indicators weights and, therefore, a dynamic resilience index. Resiliency is a dynamic feature for infrastructure systems. It differs during their life cycle with the change in maintenance and rehabilitation plans, systems retrofit and the occurring disruptive events throughout their life cycle. Therefore, the PCA technique was the preferred method used where it is data-based oriented and eliminates the subjectivity while driving indicators weights.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 25 April 2024

Metin Uzun

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV…

Abstract

Purpose

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV) by stochastically optimizing autonomous flight control system (AFCS) parameters. For minimizing autonomous flight cost and maximizing autonomous flight performance, a stochastic design approach is benefitted over certain parameters (i.e. gains of longitudinal PID controller of a hierarchical autopilot system) meanwhile lower and upper constraints exist on these design parameters.

Design/methodology/approach

A rotary wing mini UAV is produced in drone Laboratory of Iskenderun Technical University. This rotary wing UAV has three blades main rotor, fuselage, landing gear and tail rotor. It is also able to carry slung loads. AFCS variables (i.e. gains of longitudinal PID controller of hierarchical autopilot system) are stochastically optimized to minimize autonomous flight cost capturing rise time, settling time and overshoot during longitudinal flight and to maximize autonomous flight performance. Found outcomes are applied during composing rotary wing mini UAV autonomous flight simulations.

Findings

By using stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads over previously mentioned gains longitudinal PID controller when there are lower and upper constraints on these variables, a high autonomous performance having rotary wing mini UAV is obtained.

Research limitations/implications

Approval of Directorate General of Civil Aviation in Republic of Türkiye is essential for real-time rotary wing mini UAV autonomous flights.

Practical implications

Stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads is properly valuable for recovering autonomous flight performance cost of any rotary wing mini UAV.

Originality/value

Establishing a novel procedure for improving autonomous flight performance cost of a rotary wing mini UAV carrying slung loads and introducing a new process performing stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads meanwhile there exists upper and lower bounds on design variables.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 April 2024

Mohsen Jami, Hamidreza Izadbakhsh and Alireza Arshadi Khamseh

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic…

Abstract

Purpose

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic, tactical and operational decisions of three levels of blood collection, processing and distribution leads to satisfying the demand at the right time.

Design/methodology/approach

This paper proposes an integrated BSCN in disaster conditions to consider four categories of facilities, including temporary blood collection centers, field hospitals, main blood processing centers and medical centers, to optimize demand response time appropriately. The proposed model applies the location of all permanent and emergency facilities in three levels: blood collection, processing and distribution. Other essential decisions, including multipurpose facilities, emergency transportation, inventory and allocation, were also used in the model. The LP metric method is applied to solve the proposed bi-objective mathematical model for the BSCN.

Findings

The findings show that this model clarifies its efficiency in the total cost and blood delivery time reduction, which results in a low carbon transmission of the blood supply chain.

Originality/value

The researchers proposed an integrated BSCN in disaster conditions to minimize the cost and time of blood delivery. They considered multipurpose capabilities for facilities (e.g. field hospitals are responsible for the three purposes of blood collection, processing and distribution), and so locating permanent and emergency facilities at three levels of blood collection, processing and distribution, support facilities, emergency transportation and traffic on the route with pollution were used to present a new model.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

1 – 10 of 90