Search results

1 – 10 of 48
Article
Publication date: 6 August 2024

Xiaohui Dou, Yadong Li, Xinwei Zhang, Shengnan Wang, Yang Cheng, Wanpeng Yao, Dalei Zhang and Yan Li

The purpose of this study is to characterize the galvanic corrosion behavior of a simulated X80 pipeline steel welded joint (PSWJ) reconstructed by the wire beam electrode (WBE…

Abstract

Purpose

The purpose of this study is to characterize the galvanic corrosion behavior of a simulated X80 pipeline steel welded joint (PSWJ) reconstructed by the wire beam electrode (WBE) and numerical simulation methods.

Design/methodology/approach

The galvanic corrosion of an X80 PSWJ was studied using WBE and numerical simulation methods. The microstructures of the coarse-grained heat affected zone, fine-grained heat affected zone and intercritical heat affected zone were simulated in X80 pipeline steel via Gleeble thermomechanical simulation processing.

Findings

Comparing the corrosion current density of coupled and isolated weld metal (WM), base metal (BM) and heat-affected zone (HAZ), the coupled WM exhibited a higher corrosion current density than isolated WM; the coupled BM and HAZ exhibited lower corrosion current densities than isolated BM and HAZ. The results exhibited that the maximum anodic galvanic current fitted the Gumbel distribution. Moreover, the numerical simulation results agreed well with the experimental data.

Originality/value

This study provides insight into corrosion evaluation of heterogeneous welded joints by a combination of experiment and simulation. The method of reconstruction of the welded joint has been proven to be a feasible approach for studying the corrosion behavior of the X80 PSWJ with high spatial resolution.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 August 2024

QingYuan Zhou, Yangting Sun, Xiangyu Wang, Xin Tan, Yiming Jiang and Jin Li

This study aims to assess the pitting resistance of austenitic stainless steel welded joints fusion zone (FZ) with high density of inclusions before and after surface treatment…

Abstract

Purpose

This study aims to assess the pitting resistance of austenitic stainless steel welded joints fusion zone (FZ) with high density of inclusions before and after surface treatment, including potentiostatic pulse technique (PPT) and pickling.

Design/methodology/approach

The potentiodynamic polarization tests and critical pitting temperature tests were carried out for estimating pitting resistance. The PPT and pickling were performed as surface treatment. Scanning electron microscope (SEM) and energy dispersive spectrometer were used for characterize the microstructure and elemental distribution. Electron back-scattered diffraction (EBSD) was used to assess the portion of phases and morphology of grains.

Findings

The weld metal exhibits a higher degree of alloying compared to the base metal, and it contains d-phase and sulfur-containing inclusions. Sulfur-containing inclusions serve as initiation sites for pitting, and they diminish the pitting resistance of weld metal. Both PPT and pickling can remove sulfur-containing inclusions, but PPT causes localized dissolution of the weld metal matrix around the inclusions, while pickling does not. Because of the high density of inclusions, certain pits initiated by PPT are significantly deeper, which makes the formation of stable pitting easier. Because of the high density of inclusions, certain pits initiated by the PPT are deeper. This characteristic facilitates the progression of these initial defects into fully developed, stable pits.

Originality/value

Analysis of pitting initiation in shielded metal arc welding FZ with PPT and ex situ SEM tracking observation. Explanation of why the PPT surface treatment is not able to enhance the pitting resistance of stainless steel with a high inclusion density.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2024

Qing Liu, Chengjun Wang, Chenchen Shang and Jiabao Li

The purpose of this study is to reduce the residual stress in welded workpieces, optimize the vibratory stress relief treatment process through the use of a vibration generator…

Abstract

Purpose

The purpose of this study is to reduce the residual stress in welded workpieces, optimize the vibratory stress relief treatment process through the use of a vibration generator and enhance the durability and longevity of the workpiece by developing a vibratory stress relief robot that incorporates a multi-manipulator system.

Design/methodology/approach

The multi-manipulator combination work is designed so that each manipulator is deployed according to the requirements of vibration stress relief work. Each manipulator works independently and coordinates with others to achieve multi-dimensional vibratory stress relief of the workpiece. A two-degree-of-freedom mobile platform is designed to enable the transverse and longitudinal movement of the manipulator, expanding the working space of the robot. A small electromagnetic superharmonic vibration generator is designed to produce directional vibrations in any orientation. This design addresses the technical challenge of traditional vibration generators being bulky and unable to achieve directional vibrations.

Findings

The residual stress relief experiment demonstrates that the residual stress of the workpiece is reduced by approximately 73% through three-degree-of-freedom vibration. The multi-dimensional vibration effectively enhances the relief effect of residual stress, which is beneficial for improving the strength and service life of the workpiece.

Originality/value

A new multi-manipulator robot is proposed to alleviate the residual stress generated by workpiece welding by integrating vibratory stress relief with robotics. It is beneficial to reduce material and energy consumption while enhancing the strength and service life of the workpiece.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 August 2024

Ibrahim T. Teke and Ahmet H. Ertas

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to…

Abstract

Purpose

The paper's goal is to examine and illustrate the useful uses of submodeling in finite element modeling for topology optimization and stress analysis. The goal of the study is to demonstrate how submodeling – more especially, a 1D approach – can reliably and effectively produce ideal solutions for challenging structural issues. The paper aims to demonstrate the usefulness of submodeling in obtaining converged solutions for stress analysis and optimized geometry for improved fatigue life by studying a cantilever beam case and using beam formulations. In order to guarantee the precision and dependability of the optimization process, the developed approach will also be validated through experimental testing, such as 3-point bending tests and 3D printing. Using 3D finite element models, the 1D submodeling approach is further validated in the final step, showing a strong correlation with experimental data for deflection calculations.

Design/methodology/approach

The authors conducted a literature review to understand the existing research on submodeling and its practical applications in finite element modeling. They selected a cantilever beam case as a test subject to demonstrate stress analysis and topology optimization through submodeling. They developed a 1D submodeling approach to streamline the optimization process and ensure result validity. The authors utilized beam formulations to optimize and validate the outcomes of the submodeling approach. They 3D-printed the optimized models and subjected them to a 3-point bending test to confirm the accuracy of the developed approach. They employed 3D finite element models for submodeling to validate the 1D approach, focusing on specific finite elements for deflection calculations and analyzed the results to demonstrate a strong correlation between the theoretical models and experimental data, showcasing the effectiveness of the submodeling methodology in achieving optimal solutions efficiently and accurately.

Findings

The findings of the paper are as follows: 1. The use of submodeling, specifically a 1D submodeling approach, proved to be effective in achieving optimal solutions more efficiently and accurately in finite element modeling. 2. The study conducted on a cantilever beam case demonstrated successful stress analysis and topology optimization through submodeling, resulting in optimized geometry for enhanced fatigue life. 3. Beam formulations were utilized to optimize and validate the outcomes of the submodeling approach, leading to the successful 3D printing and testing of the optimized models through a 3-point bending test. 4. Experimental results confirmed the accuracy and validity of the developed submodeling approach in streamlining the optimization process. 5. The use of 3D finite element models for submodeling further validated the 1D approach, with specific finite elements showing a strong correlation with experimental data in deflection calculations. Overall, the findings highlight the effectiveness of submodeling techniques in achieving optimal solutions and validating results in finite element modeling, stress analysis and optimization processes.

Originality/value

The originality and value of the paper lie in its innovative approach to utilizing submodeling techniques in finite element modeling for structural analysis and optimization. By focusing on the reduction of finite element models and the creation of smaller, more manageable models through submodeling, the paper offers designers a more efficient and accurate way to achieve optimal solutions for complex problems. The study's use of a cantilever beam case to demonstrate stress analysis and topology optimization showcases the practical applications of submodeling in real-world scenarios. The development of a 1D submodeling approach, along with the utilization of beam formulations and 3D printing for experimental validation, adds a novel dimension to the research. Furthermore, the paper's integration of 1D and 3D submodeling techniques for deflection calculations and validation highlights the thoroughness and rigor of the study. The strong correlation between the finite element models and experimental data underscores the reliability and accuracy of the developed approach. Overall, the originality and value of this paper lie in its comprehensive exploration of submodeling techniques, its practical applications in structural analysis and optimization and its successful validation through experimental testing.

Article
Publication date: 13 September 2024

Gang Li, Shuainan Song, Qun Cai, Biao Wu and Zhichao Wen

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of…

Abstract

Purpose

For the purpose of saving nickel, this study aims to develop new duplex stainless steel cored wires suitable for wire arc additive manufacturing (WAAM) with the addition of nitrogen.

Design/methodology/approach

The effect of nitrogen content on the microstructure and mechanical properties of the thin-walled deposits is investigated in detail.

Findings

The microstructure of thin-walled deposits mainly consists of austenite, ferrite and secondary austenite. With increasing nitrogen content, the austenite in the deposited metals increases. The austenite proportion in the bottom region is more than that in the top region of the deposited metals. The χ phase is randomly distributed at the grain boundaries and within ferrite. The σ phase is mainly precipitated at ferrite and austenite grain boundaries. With increasing nitrogen content, the tensile strength of the deposited metals increases, but the impact toughness of the deposited metals deteriorates.

Originality/value

This study proposes new duplex stainless steel cored wires for WAAM, which realizes the objective of saving nickel.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 August 2024

Wenshen Xu, Yifan Zhang, Xinhang Jiang, Jun Lian and Ye Lin

In the field of steel defect detection, the existing detection algorithms struggle to achieve a satisfactory balance between detection accuracy, computational cost and inference…

Abstract

Purpose

In the field of steel defect detection, the existing detection algorithms struggle to achieve a satisfactory balance between detection accuracy, computational cost and inference speed due to the interference from complex background information, the variety of defect types and significant variations in defect morphology. To solve this problem, this paper aims to propose an efficient detector based on multi-scale information extraction (MSI-YOLO), which uses YOLOv8s as the baseline model.

Design/methodology/approach

First, the authors introduce an efficient multi-scale convolution with different-sized convolution kernels, which enables the feature extraction network to accommodate significant variations in defect morphology. Furthermore, the authors introduce the channel prior convolutional attention mechanism, which allows the network to focus on defect areas and ignore complex background interference. Considering the lightweight design and accuracy improvement, the authors introduce a more lightweight feature fusion network (Slim-neck) to improve the fusion effect of feature maps.

Findings

MSI-YOLO achieves 79.9% mean average precision on the public data set Northeastern University (NEU)-DET, with a model size of only 19.0 MB and an frames per second of 62.5. Compared with other state-of-the-art detectors, MSI-YOLO greatly improves the recognition accuracy and has significant advantages in computational cost and inference speed. Additionally, the strong generalization ability of MSI-YOLO is verified on the collected industrial site steel data set.

Originality/value

This paper proposes an efficient steel defect detector with high accuracy, low computational cost, excellent detection speed and strong generalization ability, which is more valuable for practical applications in resource-limited industrial production.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 June 2023

Srinivas Naik Lonavath and Hadya Boda

This Friction stir welding study aims to weld thick AA8011 aluminium plates, and the interface joints created with a variety of tool pin profiles were examined for their effects…

Abstract

Purpose

This Friction stir welding study aims to weld thick AA8011 aluminium plates, and the interface joints created with a variety of tool pin profiles were examined for their effects on the welding process.

Design/methodology/approach

Scanning electron microscopy and optical microscopy and X-ray diffraction were used to examine the macro and micro-structural characteristics, as well as the fracture surfaces, of tensile specimens. The mechanical properties (tensile, hardness tests) of the base metal and the welded specimens under a variety of situations being tested. Additionally, a fracture toughness test was used to analyse the resilience of the base metal and the best weldments to crack formation. Using a response surface methodology with a Box–Behnken design, the optimum values for the three key parameters (rotational speed, welding speed and tool pin profile) positively affecting the weld quality were established.

Findings

The results demonstrate that a defect-free junction can be obtained by using a cylindrical tool pin profile, increasing the rotational speed while decreasing the welding speeds. The high temperature and compressive residual stress generated during welding leads to the increase in grain size. The grain size of the welded zone for optimal conditions is significantly smaller and the hardness of the stir zone is higher than the other experimental run parameters.

Originality/value

The work focuses on the careful examination of microstructures behaviour under various tool pin profile responsible for the change in mechanical properties. The mathematical model generated using Taguchi approach and parameters was optimized by using multi-objectives response surface methodology techniques.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 May 2023

Amit Rana, Sandeep Deshwal, Rajesh and Naveen Hooda

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these…

Abstract

Purpose

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these parameters is uttermost requirement and aim of this study to increase the suitability of FSW in different manufacturing industries. Hence, the input parameters are optimized through different soft computing methods to increase the considered objective in this study.

Design/methodology/approach

In this research, ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of FSW prepared butt joints of AA6061 and AA5083 Aluminium alloys materials are investigated as per American Society for Testing and Materials (ASTM E8-M04) standard. The FSW joints were prepared by changing the three input process parameters. To develop experimental run order design matrix, rotatable central composite design strategy was used. Furthermore, genetic algorithm (GA) in combination (Hybrid) with response surface methodology (RSM), artificial neural network (ANN), i.e. RSM-GA, ANN-GA, is exercised to optimize the considered process parameters.

Findings

The maximum value of UTS, YS and EL of test specimens on universal testing machine was measured as 264 MPa, 204 MPa and 14.41%, respectively. The most optimized results (UTS = 269.544 MPa, YS = 211.121 MPa and EL = 17.127%) are obtained with ANN-GA for the considered objectives.

Originality/value

The optimization of input parameters to increase the output objective values using hybrid soft computing techniques is unique in this research paper. The outcomes of this study will help the FSW using manufacturing industries to choose the best optimized parameters set for FSW prepared butt joint with improved mechanical properties.

Article
Publication date: 10 August 2023

Nor Salwani Hashim, Fatimah De’nan and Norbaya Omar

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one…

Abstract

Purpose

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one type that has been widely used because of its simplicity in fabrication and rapid site erection. The purpose of this study is to determine the moment-rotation curve, moment of resistance (MR) and mode of failure, and the results were compared with existing results for normal flat web connections.

Design/methodology/approach

In this study, the connection modeled was the flush end-plate welded with triangular web profile (TriWP) steel beam section and then bolted to a UKC column flange. The bolted flush end-plate semi-rigid beam to column connection was modeled using finite element software. The specimen was modeled using LUSAS 14.3 finite element software, with dimensions and parameters of the finite element model sizes being 200 × 200 × 49.9 UKC, 200 × 100 × 17.8 UKB and 200 × 100 with a thickness of 20 mm for the endplate.

Findings

It can be concluded that the MR obtained from the TriWP steel beam section is different from that of the normal flat web steel beam by 28%. The value of MR for the TriWP beam section is lower than that of the normal flat web beam section, but the moment ultimate is higher by 21% than the normal flat web. Therefore, it can be concluded that the TriWP section can resist more acting force than the normal flat web section and is suitable to be used as a new proposed shape to replace the normal flat web section for a certain steel structure based on the end-plate connection behavior.

Originality/value

As a result, the TriWP section has better performance than the flat web section in resisting MR behavior.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 48