Search results

1 – 4 of 4
Article
Publication date: 30 August 2024

Jingfeng Quan and Xiaoyan Tang

This paper aims to explore new variable separation solutions for a new generalized (3 + 1)-dimensional breaking soliton equation, construct novel nonlinear excitations and discuss…

Abstract

Purpose

This paper aims to explore new variable separation solutions for a new generalized (3 + 1)-dimensional breaking soliton equation, construct novel nonlinear excitations and discuss their dynamical behaviors that may exist in many realms such as fluid dynamics, optics and telecommunication.

Design/methodology/approach

By means of the multilinear variable separation approach, variable separation solutions for the new generalized (3 + 1)-dimensional breaking soliton equation are derived with arbitrary low dimensional functions with respect to {y, z, t}. The asymptotic analysis is presented to represent generally the evolutions of rogue waves.

Findings

Fixing several types of explicit expressions of the arbitrary function in the potential field U, various novel nonlinear wave excitations are fabricated, such as hybrid waves of kinks and line solitons with different structures and other interesting characteristics, as well as interacting waves between rogue waves, kinks, line solitons with translation and rotation.

Research limitations/implications

The paper presents that a variable separation solution with an arbitrary function of three independent variables has great potential to describe localized waves.

Practical implications

The roles of parameters in the chosen functions are ascertained in this study, according to which, one can understand the amplitude, shape, background and other characteristics of the localized waves.

Social implications

The work provides novel localized waves that might be used to explain some nonlinear phenomena in fluids, plasma, optics and so on.

Originality/value

The study proposes a new generalized (3 + 1)-dimensional breaking soliton equation and derives its nonlinear variable separation solutions. It is demonstrated that a variable separation solution with an arbitrary function of three independent variables provides a treasure-house of nonlinear waves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 September 2024

Suheil Khuri and Abdul-Majid Wazwaz

The purpose of this study is to investigate the nonlinear Schrödinger equation (NLS) incorporating spatiotemporal dispersion and other dispersive effects. The goal is to derive…

Abstract

Purpose

The purpose of this study is to investigate the nonlinear Schrödinger equation (NLS) incorporating spatiotemporal dispersion and other dispersive effects. The goal is to derive various soliton solutions, including bright, dark, singular, periodic and exponential solitons, to enhance the understanding of soliton propagation dynamics in nonlinear metamaterials (MMs) and contribute new findings to the field of nonlinear optics.

Design/methodology/approach

The research uses a range of powerful mathematical approaches to solve the NLS. The proposed methodologies are applied systematically to derive a variety of optical soliton solutions, each demonstrating unique optical behaviors and characteristics. The approach ensures that both the theoretical framework and practical implications of the solutions are thoroughly explored.

Findings

The study successfully derives several types of soliton solutions using the aforementioned mathematical approaches. Key findings include bright optical envelope solitons, dark optical envelope solitons, periodic solutions, singular solutions and exponential solutions. These results offer new insights into the behavior of ultrashort solitons in nonlinear MMs, potentially aiding further research and applications in nonlinear wave studies.

Originality/value

This study makes an original contribution to nonlinear optics by deriving new soliton solutions for the NLS with spatiotemporal dispersion. The diversity of solutions, including bright, dark, periodic, singular and exponential solitons, adds substantial value to the existing body of knowledge. The use of distinct and reliable methodologies to obtain these solutions underscores the novelty and potential applications of the research in advancing optical technologies. The originality lies in the novel approaches used to obtain these diverse soliton solutions and their potential impact on the study and application of nonlinear waves in MMs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2024

Ahmed E. Abouelregal, Marin Marin, S.S. Saskar and Abdelaziz Foul

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with…

Abstract

Purpose

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with thermoelasticity. It accounts for the fact that heat transfer and deformation are non-local processes that depend on long-term memory. The sphere is free of external stresses and rotates around one of its radial axes at a constant rate. The coupled system equations are solved using the Laplace transform. The outcomes showed that the viscoelastic deformation and thermal stresses increased with the value of the fractional order coefficients.

Design/methodology/approach

The results obtained are considered good because they indicate that the approach or model under examination shows robust performance and produces accurate or reliable results that are consistent with the corresponding literature.

Findings

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Originality/value

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 September 2024

Muhammad Faisal, Iftikhar Ahmad, Qazi Zan-Ul-Abadin, Irfan Anjum Badruddin and Mohamed Hussien

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing…

Abstract

Purpose

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing thermal systems. The aim is to investigate the behavior of unsteady, magnetized and laminar flow using a parametric model based on the thermo-physical properties of alumina and copper nanoparticles.

Design/methodology/approach

The research uses boundary layer approximations and the Keller-box method to solve the derived ordinary differential equations, ensuring numerical accuracy through convergence and stability analysis. A comparison benchmark has been used to authenticate the accuracy of the numerical outcomes.

Findings

Results indicate that increasing the Casson fluid parameter (ranging from 0.1 to 1.0) reduces velocity, the Bejan number decreases with higher bidirectional flow parameter (ranging from 0.1 to 0.9) and the Nusselt number increases with higher nanoparticle concentrations (ranging from 1% to 4%).

Research limitations/implications

This study has limitations, including the assumption of laminar flow and the neglect of possible turbulent effects, which could be significant in practical applications.

Practical implications

The findings offer insights for optimizing thermal management systems, particularly in industries where precise control of heat transfer is crucial. The Keller-box simulation method proves to be effective in accurately predicting the behavior of such complex systems, and the entropy evaluation aids in assessing thermodynamic irreversibilities, which can enhance the efficiency of engineering designs.

Originality/value

These findings provide valuable insights into the thermal management of hybrid nanofluid systems, marking a novel contribution to the field.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 4 of 4