Search results

1 – 10 of over 1000
Article
Publication date: 19 April 2023

Shanaka Herath, Vince Mangioni, Song Shi and Xin Janet Ge

House price fluctuations send vital signals to many parts of the economy, and long-term predictions of house prices are of great interest to governments and property developers…

Abstract

Purpose

House price fluctuations send vital signals to many parts of the economy, and long-term predictions of house prices are of great interest to governments and property developers. Although predictive models based on economic fundamentals are widely used, the common requirement for such studies is that underlying data are stationary. This paper aims to demonstrate the usefulness of alternative filtering methods for forecasting house prices.

Design/methodology/approach

We specifically focus on exponential smoothing with trend adjustment and multiplicative decomposition using median house prices for Sydney from Q3 1994 to Q1 2017. The model performance is evaluated using out-of-sample forecasting techniques and a robustness check against secondary data sources.

Findings

Multiplicative decomposition outperforms exponential smoothing at forecasting accuracy. The superior decomposition model suggests that seasonal and cyclical components provide important additional information for predicting house prices. The forecasts for 2017–2028 suggest that prices will slowly increase, going past 2016 levels by 2020 in the apartment market and by 2022/2023 in the detached housing market.

Research limitations/implications

We demonstrate that filtering models are simple (univariate models that only require historical house prices), easy to implement (with no condition of stationarity) and widely used in financial trading, sports betting and other fields where producing accurate forecasts is more important than explaining the drivers of change. The paper puts forward a case for the inclusion of filtering models within the forecasting toolkit as a useful reference point for comparing forecasts from alternative models.

Originality/value

To the best of the authors’ knowledge, this paper undertakes the first systematic comparison of two filtering models for the Sydney housing market.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 22 January 2024

Md. Tareq Hossain Khondoker, Md. Mehrab Hossain and Ayan Saha

Due to its longer length compared to other construction materials and distinctive stacking patterns, obtaining construction steel bars in congested construction sites with limited…

Abstract

Purpose

Due to its longer length compared to other construction materials and distinctive stacking patterns, obtaining construction steel bars in congested construction sites with limited storage capacity becomes challenging. Lack of storage space in crowded places prompts the need for building steel bar storage choice optimization. Therefore, this study aims to optimize the construction steel bar procurement plan by providing when and how much rebar to order and how to stack different sizes of rebar considering limited storage capacity.

Design/methodology/approach

A novel approach has been presented in this paper by integrating 4D building information modelling (BIM) and mixed-integer linear programming (MILP). This technique uses BIM to retrieve material quantities, including rebar, during the design phase. Following that, activities are scheduled depending on the duration determined by crew productivity data and material quantity. Then, based on the prior price, the price of each unit of rebar is projected for the duration of construction using the exponential smoothing method. After that, the MILP approach is used to generate an optimal steel bar procurement plan for limited storage space following the scheduled rebar-related operations.

Findings

The developed strategy minimizes overall procurement costs and ensures the storage of rebar as per standard guidelines. An optimal rebar procurement and storage plan to construct a six-storied RC frame has been presented in this paper as a demonstrative example to show the effectiveness of the proposed method.

Originality/value

This work partially satisfies a long-sought research need for establishing a comprehensive construction steel bar procurement system, making it a very useful source of information for practitioners and researchers. The proposed method can be used to minimize a key performance limitation that the conventional rebar procurement practice for crowded building sites may experience.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 January 2024

Wei Xiao, Zhongtao Fu, Shixian Wang and Xubing Chen

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this…

Abstract

Purpose

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this paper is to propose a deep learning torque prediction method based on long short-term memory (LSTM) recurrent neural networks optimized by particle swarm optimization (PSO), which can accurately predict the the joint torque.

Design/methodology/approach

The proposed model optimized the LSTM with PSO algorithm to accurately predict the IRs joint torque. The authors design an excitation trajectory for ABB 1600–10/145 experimental robot and collect its relative dynamic data. The LSTM model was trained with the experimental data, and PSO was used to find optimal number of LSTM nodes and learning rate, then a torque prediction model is established based on PSO-LSTM deep learning method. The novel model is used to predict the robot’s six joint torque and the root mean error squares of the predicted data together with least squares (LS) method were comparably studied.

Findings

The predicted joint torque value by PSO-LSTM deep learning approach is highly overlapped with those from real experiment robot, and the error is quite small. The average square error between the predicted joint torque data and experiment data is 2.31 N.m smaller than that with the LS method. The accuracy of the novel PSO-LSTM learning method for joint torque prediction of IR is proved.

Originality/value

PSO and LSTM model are deeply integrated for the first time to predict the joint torque of IR and the prediction accuracy is verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 January 2024

Juelin Leng, Quan Xu, Tiantian Liu, Yang Yang and Peng Zheng

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Abstract

Purpose

The purpose of this paper is to present an automatic approach for mesh sizing field generation of complicated  computer-aided design (CAD) models.

Design/methodology/approach

In this paper, the authors present an automatic approach for mesh sizing field generation. First, a source point extraction algorithm is applied to capture curvature and proximity features of CAD models. Second, according to the distribution of feature source points, an octree background mesh is constructed for storing element size value. Third, mesh size value on each node of background mesh is calculated by interpolating the local feature size of the nearby source points, and then, an initial mesh sizing field is obtained. Finally, a theoretically guaranteed smoothing algorithm is developed to restrict the gradient of the mesh sizing field.

Findings

To achieve high performance, the proposed approach has been implemented in multithreaded parallel using OpenMP. Numerical results demonstrate that the proposed approach is remarkably efficient to construct reasonable mesh sizing field for complicated CAD models and applicable for generating geometrically adaptive triangle/tetrahedral meshes. Moreover, since the mesh sizing field is defined on an octree background mesh, high-efficiency query of local size value could be achieved in the following mesh generation procedure.

Originality/value

How to determine a reasonable mesh size for complicated CAD models is often a bottleneck of mesh generation. For the complicated models with thousands or even ten thousands of geometric entities, it is time-consuming to construct an appropriate mesh sizing field for generating high-quality mesh. A parallel algorithm of mesh sizing field generation with low computational complexity is presented in this paper, and its usability and efficiency have been verified.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 June 2023

Jyh-Bin Yang and Tzu-Hua Lai

This study aims to review earned value management (EVM)-relative methods, including the original EVM, earned schedule method (ESM) and earned duration management (EDM(t)). This…

Abstract

Purpose

This study aims to review earned value management (EVM)-relative methods, including the original EVM, earned schedule method (ESM) and earned duration management (EDM(t)). This study then proposes a general implementation procedure and some basic principles for the selection of EVM-relative methods.

Design/methodology/approach

After completing an intensive literature review, this study conducts a case study to examine the forecasting performance of project duration using the EVM, ESM and EDM(t) methods.

Findings

When the project is expected to finish on time, ESM with a performance factor equal to 1 is the recommended method. EDM(t) would be the most reliable method during a project's entire lifetime if EDM(t) is expected to be delayed based on past experience.

Research limitations/implications

As this research conducts a case study with only one building construction project, the results might not hold true for all types of construction projects.

Practical implications

EVM, ESM and EDM(t) are simple and data-accessible methods. With the help of a general implementation procedure, applying all three methods would be better. The power of the three methods is definitely larger than that of choosing only one for complex construction projects.

Originality/value

Previous studies have discussed the advantages and disadvantages of EVM, ESM and EDM(t). This study amends the available outcomes. Thus, for schedulers or researchers interested in implementing EVM, ESM and EDM(t), this study can provide more constructive instructions.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 February 2024

Chao Xia, Bo Zeng and Yingjie Yang

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between…

Abstract

Purpose

Traditional multivariable grey prediction models define the background-value coefficients of the dependent and independent variables uniformly, ignoring the differences between their physical properties, which in turn affects the stability and reliability of the model performance.

Design/methodology/approach

A novel multivariable grey prediction model is constructed with different background-value coefficients of the dependent and independent variables, and a one-to-one correspondence between the variables and the background-value coefficients to improve the smoothing effect of the background-value coefficients on the sequences. Furthermore, the fractional order accumulating operator is introduced to the new model weaken the randomness of the raw sequence. The particle swarm optimization (PSO) algorithm is used to optimize the background-value coefficients and the order of the model to improve model performance.

Findings

The new model structure has good variability and compatibility, which can achieve compatibility with current mainstream grey prediction models. The performance of the new model is compared and analyzed with three typical cases, and the results show that the new model outperforms the other two similar grey prediction models.

Originality/value

This study has positive implications for enriching the method system of multivariable grey prediction model.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 5 December 2023

Dezhao Tang, Qiqi Cai, Tiandan Nie, Yuanyuan Zhang and Jinghua Wu

Integrating artificial intelligence and quantitative investment has given birth to various agricultural futures price prediction models suitable for nonlinear and non-stationary…

Abstract

Purpose

Integrating artificial intelligence and quantitative investment has given birth to various agricultural futures price prediction models suitable for nonlinear and non-stationary data. However, traditional models have limitations in testing the spatial transmission relationship in time series, and the actual prediction effect is restricted by the inability to obtain the prices of other variable factors in the future.

Design/methodology/approach

To explore the impact of spatiotemporal factors on agricultural prices and achieve the best prediction effect, the authors innovatively propose a price prediction method for China's soybean and palm oil futures prices. First, an improved Granger Causality Test was adopted to explore the spatial transmission relationship in the data; second, the Seasonal and Trend decomposition using Loess model (STL) was employed to decompose the price; then, the Apriori algorithm was applied to test the time spillover effect between data, and CRITIC was used to extract essential features; finally, the N-Beats model was selected as the prediction model for futures prices.

Findings

Using the Apriori and STL algorithms, the authors found a spillover effect in agricultural prices, and past trends and seasonal data will impact future prices. Using the improved Granger causality test method to analyze the unidirectional causality relationship between the prices, the authors obtained a spatial effect among the agricultural product prices. By comparison, the N-Beats model based on the spatiotemporal factors shows excellent prediction effects on different prices.

Originality/value

This paper addressed the problem that traditional models can only predict the current prices of different agricultural products on the same date, and traditional spatial models cannot test the characteristics of time series. This result is beneficial to the sustainable development of agriculture and provides necessary numerical and technical support to ensure national agricultural security.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 29 February 2024

Zhen Chen, Jing Liu, Chao Ma, Huawei Wu and Zhi Li

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Abstract

Purpose

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Design/methodology/approach

Error sources in computational fluid dynamics were analyzed. Additionally, controllable experiential and discretization errors, which significantly influence the calculated results, are expounded upon. Considering the airflow mechanism around a vehicle, the computational efficiency and accuracy of each solution strategy were compared and analyzed through numerous computational cases. Finally, the most suitable numerical strategy, including the turbulence model, simplified vehicle model, calculation domain, boundary conditions, grids and discretization scheme, was identified. Two simplified vehicle models were introduced, and relevant wind tunnel tests were performed to validate the selected strategy.

Findings

Errors in vehicle computational aerodynamics mainly stem from the unreasonable simplification of the vehicle model, calculation domain, definite solution conditions, grid strategy and discretization schemes. Using the proposed standardized numerical strategy, the simulated steady and transient aerodynamic characteristics agreed well with the experimental results.

Originality/value

Building upon the modified Low-Reynolds Number k-e model and Scale Adaptive Simulation model, to the best of the authors’ knowledge, a precise and standardized numerical simulation strategy for vehicle aerodynamics is proposed for the first time, which can be integrated into vehicle research and design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 July 2023

Zicheng Zhang, Xinyue Lin, Shaonan Shan and Zhaokai Yin

This study aims to analyze government hotline text data and generating forecasts could enable the effective detection of public demands and help government departments explore…

Abstract

Purpose

This study aims to analyze government hotline text data and generating forecasts could enable the effective detection of public demands and help government departments explore, mitigate and resolve social problems.

Design/methodology/approach

In this study, social problems were determined and analyzed by using the time attributes of government hotline data. Social public events with periodicity were quantitatively analyzed via the Prophet model. The Prophet model is decided after running a comparison study with other widely applied time series models. The validation of modeling and forecast was conducted for social events such as travel and educational services, human resources and public health.

Findings

The results show that the Prophet algorithm could generate relatively the best performance. Besides, the four types of social events showed obvious trends with periodicities and holidays and have strong interpretable results.

Originality/value

The research could help government departments pay attention to time dependency and periodicity features of the hotline data and be aware of early warnings of social events following periodicity and holidays, enabling them to rationally allocate resources to handle upcoming social events and problems and better promoting the role of the big data structure of government hotline data sets in urban governance innovations.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 20 July 2023

Mu Shengdong, Liu Yunjie and Gu Jijian

By introducing Stacking algorithm to solve the underfitting problem caused by insufficient data in traditional machine learning, this paper provides a new solution to the cold…

Abstract

Purpose

By introducing Stacking algorithm to solve the underfitting problem caused by insufficient data in traditional machine learning, this paper provides a new solution to the cold start problem of entrepreneurial borrowing risk control.

Design/methodology/approach

The authors introduce semi-supervised learning and integrated learning into the field of migration learning, and innovatively propose the Stacking model migration learning, which can independently train models on entrepreneurial borrowing credit data, and then use the migration strategy itself as the learning object, and use the Stacking algorithm to combine the prediction results of the source domain model and the target domain model.

Findings

The effectiveness of the two migration learning models is evaluated with real data from an entrepreneurial borrowing. The algorithmic performance of the Stacking-based model migration learning is further improved compared to the benchmark model without migration learning techniques, with the model area under curve value rising to 0.8. Comparing the two migration learning models reveals that the model-based migration learning approach performs better. The reason for this is that the sample-based migration learning approach only eliminates the noisy samples that are relatively less similar to the entrepreneurial borrowing data. However, the calculation of similarity and the weighing of similarity are subjective, and there is no unified judgment standard and operation method, so there is no guarantee that the retained traditional credit samples have the same sample distribution and feature structure as the entrepreneurial borrowing data.

Practical implications

From a practical standpoint, on the one hand, it provides a new solution to the cold start problem of entrepreneurial borrowing risk control. The small number of labeled high-quality samples cannot support the learning and deployment of big data risk control models, which is the cold start problem of the entrepreneurial borrowing risk control system. By extending the training sample set with auxiliary domain data through suitable migration learning methods, the prediction performance of the model can be improved to a certain extent and more generalized laws can be learned.

Originality/value

This paper introduces the thought method of migration learning to the entrepreneurial borrowing scenario, provides a new solution to the cold start problem of the entrepreneurial borrowing risk control system and verifies the feasibility and effectiveness of the migration learning method applied in the risk control field through empirical data.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

1 – 10 of over 1000