Search results

1 – 10 of over 2000
Article
Publication date: 24 September 2024

Penghai Deng, Quansheng Liu and Haifeng Lu

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil…

Abstract

Purpose

The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil rock mixtures (SRM), in which the rocks within the SRM model have shape randomness, size randomness and spatial distribution randomness.

Design/methodology/approach

Based on the modeling method of heterogeneous rocks, the SRM numerical model can be built and by adjusting the boundary between soil and rock, an SRM numerical model with any rock content can be obtained. The reliability and robustness of the new modeling method can be verified by uniaxial compression simulation. In addition, this paper investigates the effects of rock topology, rock content, slope height and slope inclination on the stability of SRM slopes.

Findings

Investigations of the influences of rock content, slope height and slope inclination of SRM slopes showed that the slope height had little effect on the failure mode. The influences of rock content and slope inclination on the slope failure mode were significant. With increasing rock content and slope dip angle, SRM slopes gradually transitioned from a single shear failure mode to a multi-shear fracture failure mode, and shear fractures showed irregular and bifurcated characteristics in which the cut-off values of rock content and slope inclination were 20% and 80°, respectively.

Originality/value

This paper proposed a new modeling method for SRMs based on FDEM, with rocks having random shapes, sizes and spatial distributions.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 23 September 2024

Ali Doostvandi, Mohammad HajiAzizi and Fatemeh Pariafsai

This study aims to use regression Least-Square Support Vector Machine (LS-SVM) as a probabilistic model to determine the factor of safety (FS) and probability of failure (PF) of…

Abstract

Purpose

This study aims to use regression Least-Square Support Vector Machine (LS-SVM) as a probabilistic model to determine the factor of safety (FS) and probability of failure (PF) of anisotropic soil slopes.

Design/methodology/approach

This research uses machine learning (ML) techniques to predict soil slope failure. Due to the lack of analytical solutions for measuring FS and PF, it is more convenient to use surrogate models like probabilistic modeling, which is suitable for performing repetitive calculations to compute the effect of uncertainty on the anisotropic soil slope stability. The study first uses the Limit Equilibrium Method (LEM) based on a probabilistic evaluation over the Latin Hypercube Sampling (LHS) technique for two anisotropic soil slope profiles to assess FS and PF. Then, using one of the supervised methods of ML named LS-SVM, the outcomes (FS and PF) were compared to evaluate the efficiency of the LS-SVM method in predicting the stability of such complex soil slope profiles.

Findings

This method increases the computational performance of low-probability analysis significantly. The compared results by FS-PF plots show that the proposed method is valuable for analyzing complex slopes under different probabilistic distributions. Accordingly, to obtain a precise estimate of slope stability, all layers must be included in the probabilistic modeling in the LS-SVM method.

Originality/value

Combining LS-SVM and LEM offers a unique and innovative approach to address the anisotropic behavior of soil slope stability analysis. The initiative part of this paper is to evaluate the stability of an anisotropic soil slope based on one ML method, the Least-Square Support Vector Machine (LS-SVM). The soil slope is defined as complex because there are uncertainties in the slope profile characteristics transformed to LS-SVM. Consequently, several input parameters are effective in finding FS and PF as output parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 November 2023

Chunli Li, Liang Li, Yungming Cheng, Liang Xu and Guangming Yu

This paper aims to develop an efficient algorithm combining straightforward response surface functions with Monte Carlo simulation to conduct seismic reliability analysis in a…

Abstract

Purpose

This paper aims to develop an efficient algorithm combining straightforward response surface functions with Monte Carlo simulation to conduct seismic reliability analysis in a systematical way.

Design/methodology/approach

The representative slip surfaces are identified and based on to calibrate multiple response surface functions with acceptable accuracy. The calibrated response surfaces are used to determine the yield acceleration in Newmark sliding displacement analysis. Then, the displacement-based limit state function is adopted to conduct seismic reliability analysis.

Findings

The calibrated response surface functions have fairly good accuracy in predicting the yield acceleration in Newmark sliding displacement analysis. The seismic reliability is influenced by such factors as PGA, spatial variability and threshold value. The proposed methodology serves as an effective tool for geotechnical practitioners.

Originality/value

The multiple sources of a seismic slope response can be effectively determined using the multiple response surface functions, which are easily implemented within geotechnical engineering.

Article
Publication date: 23 October 2023

Chen-Xi Han, Tian-Shun Hou and Ye Chen

To solve the instability problem of Zhangjiayao landslide caused by rainfall, the internal mechanism of slope instability and the supporting effect of anti-slide piles are…

Abstract

Purpose

To solve the instability problem of Zhangjiayao landslide caused by rainfall, the internal mechanism of slope instability and the supporting effect of anti-slide piles are studied. The research results can provide theoretical basis for the prevention and control of loess landslides.

Design/methodology/approach

A three-dimensional finite element model of Zhangjiayao landslide is established by field geological survey, laboratory test and numerical simulation.

Findings

The results show that Zhangjiayao landslide is a loess-mudstone contact surface landslide, and rainfall leads to slope instability and traction landslide. The greater the rainfall intensity, the faster the pore water pressure of the slope increases and the faster the matrix suction decreases. The longer the rainfall duration, the greater the pore water pressure of the slope and the smaller the matrix suction. Anti-slide pile treatment can significantly improve slope stability. The slope safety factor increases with the increase of embedded depth of anti-slide pile and decreases with the increase of pile spacing.

Originality/value

Based on the unsaturated soil seepage theory and finite element strength reduction method, the failure mechanism of Zhangjiayao landslide was revealed, and the anti-slide pile structure was optimized and designed based on the pile-soil interaction principle. The research results can provide theoretical basis for the treatment of loess landslides.

Highlights

  1. A three-dimensional finite element model of Zhangjiayao landslide is established.

  2. Zhangjiayao landslide is a loess-mudstone contact surface landslide.

  3. The toe of Zhangjiayao slope is first damaged by heavy rainfall, resulting in traction landslide.

  4. The deformation of Zhangjiayao slope is highly dependent on rainfall intensity and duration.

  5. The anti-slide pile can effectively control the continuous sliding of Zhangjiayao slope.

A three-dimensional finite element model of Zhangjiayao landslide is established.

Zhangjiayao landslide is a loess-mudstone contact surface landslide.

The toe of Zhangjiayao slope is first damaged by heavy rainfall, resulting in traction landslide.

The deformation of Zhangjiayao slope is highly dependent on rainfall intensity and duration.

The anti-slide pile can effectively control the continuous sliding of Zhangjiayao slope.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 March 2022

X.R. Lü, Z. Liu, X.L. Lü and X. Wang

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of…

Abstract

Purpose

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of tractor body.

Design/methodology/approach

The mechanism is mainly composed of longitudinal slope leveling mechanism, transverse slope leveling mechanism and control components. According to the tractor body attitude in operation, the longitudinal slope leveling and lateral slope leveling can coordinate to realize the adaptive adjustment of tractor body. For this mechanism, the support mode of the linear three-point support and plane positioning combining is designed, and the leveling method of electromechanical combination is designed. The servo motor controls the longitudinal slope leveling mechanism through the reducer with self-locking function to realize the longitudinal leveling, and the servo driver controls the expansion and contraction of electric cylinder to realize lateral leveling. The designed mode can realize the relative independence and coordination of leveling in different directions.

Findings

The performance test results of the leveling mechanism are shown: the mechanism can work normally; the leveling accuracy can reach within 1°; and the leveling accuracy and stability can meet the design requirements. The leveling accuracy and stability of longitudinal slope are higher than that of lateral slope, and the coordination leveling effect of longitudinal slope and lateral slope is better than that of the independent leveling.

Originality/value

This study provides a technical reference for the design of leveling device of agricultural machines and tools in hilly and mountainous areas.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 August 2024

Mohammad Hossein Hamzezadeh Nakhjavani, Faradjollah Askari and Orang Farzaneh

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before…

Abstract

Purpose

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before the stabilization of the excavation wall. This study aims to investigate the correlation between excavation height and foundation-bearing capacity under actual field conditions.

Design/methodology/approach

This paper uses a three-dimensional rotational failure mechanism to propose a novel method for estimating foundation-bearing capacity using the upper bound limit analysis approach.

Findings

The study delineates two distinct zones in the excavation height versus bearing capacity diagram. Initially, there is a significant reduction in foundation-bearing capacity at the onset of excavation, with decreases of up to 80% compared to its undisturbed state. Within a specific range of excavation heights, the bearing capacity remains relatively constant until reaching a critical height. Beyond this threshold, the entire soil mass behind the excavation wall becomes unstable. The critical excavation height is notably influenced by the soil's internal friction angle, excavation slope angle and soil cohesion parameter. Notably, when the ratio of excavation height to foundation width is less than 0.4, changes in slope angle have no significant impact on bearing capacity.

Originality/value

The bearing capacity estimates derived from the method proposed in this paper are deemed to reflect real-world scenarios closely compared to existing methodologies.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 August 2024

Linjie Dong, Renfei Zhang, Xiaohan Liu, Jie Li, Xingsong Wang and Tian Mengqian

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities…

Abstract

Purpose

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities in traversing obstacles and lack a mechanical arm for detecting cables and equipment. This study aims to develop an intelligent robot for cable trench inspection, enhancing obstacle-crossing abilities and incorporating a mechanical arm for inspection tasks.

Design/methodology/approach

This study presents an intelligent robot for cable trench inspection, featuring a six-degree-of-freedom mechanical arm mounted on a six-track chassis with four flippers. The robot's climbing and obstacle-crossing stability, as well as the motion range of the mechanical arm, are analyzed. The positioning, navigation and remote monitoring systems are developed. Experiments, including climbing and obstacle-crossing performance tests, along with navigation and positioning system tests, are conducted. Finally, the robot's practicability is verified through field testing.

Findings

Equipped with flipper tracks, the cable trench inspection robot can traverse obstacles up to 30 cm high and maintain stable locomotion on 30° slopes. Its navigation system enables autonomous operation, while the mechanical arm performs cable current detection tasks. The remote monitoring system provides comprehensive control of the robot and environmental parameter monitoring in cable trenches.

Originality/value

The front and rear flipper tracks enhance the robot's ability to traverse obstacles in cable trenches. The mechanical arm addresses cable current and equipment contact detection issues. The navigation and remote monitoring systems improve the robot's autonomous operation and environmental monitoring capabilities. Implementing this robot can advance the automation and intelligence of cable trench inspections.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 June 2024

Young Han Bae, Thomas S. Gruca, Hyunwoo Lim and Gary J. Russell

This paper aims to analyze variations in the parameters of the market share–rank power law across consumer packaged goods (CPG) categories.

Abstract

Purpose

This paper aims to analyze variations in the parameters of the market share–rank power law across consumer packaged goods (CPG) categories.

Design/methodology/approach

The authors use a two-level hierarchical linear model to examine the relationships between category-level variables and the parameters of the market share–rank power law in 790 CPG categories.

Findings

The slope of the market share–rank power law is shallower – indicating more equal market shares – in categories of high importance to retailers and those with high levels of promotional activity or high-volume purchases. Higher levels of market share inequality are associated with categories with high overall prices.

Research limitations/implications

To the best of the authors’ knowledge, this is the first research to show the systematic influence of category characteristics on the relationship between brands’ market shares and their ranks, thus, identifying a key moderator for this important empirical generalization in marketing.

Practical implications

While market leadership may be a desirable goal for many brands, the corresponding market share at the top brand does vary. Moreover, the share premium for being number one in the category (gap between the top and other highly ranked brands) can be greatly affected by retailers’ strategies. In addition, the slope of the power law has desirable qualities as a measure of market concentration. However, the empirical study shows that category characteristics must be considered when analyzing differences in concentration across categories or time.

Originality/value

While other studies document variations in the market share–rank power law relationship, to the best of the authors’ knowledge, this is the first that models these variations as a function of observable category characteristics. The comprehensive nature of the data demonstrates the universality of the market share–rank power law relationship across CPG categories in the USA.

Details

European Journal of Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0309-0566

Keywords

Open Access
Article
Publication date: 30 July 2024

Robert C. Klein and David Michael Rosch

Our study was designed to investigate the longitudinal trajectories of student leader development capacities in a sample of students enrolled in multiple leadership-focused…

Abstract

Purpose

Our study was designed to investigate the longitudinal trajectories of student leader development capacities in a sample of students enrolled in multiple leadership-focused courses across several semesters. Our goal was to assess the degree to which course enrollment was associated with growth over the time that students engage as undergraduates in academic leadership programs, and if so, to assess the shape and speed of capacity change.

Design/methodology/approach

We utilized a multilevel intra-individual modeling approach assessing students’ motivation to lead, leader self-efficacy, and leadership skills across multiple data collection points for students in a campus major or minor focused on leadership studies. We compared an unconditional model, a fixed effect model, a random intercept model, a random slope model, and a random slope and intercept model to determine the shape of score trajectories. Our approach was not to collect traditional pre-test and post-test data – choosing to collect data only at the beginning of each semester – to reduce time cues typically inherent within pre-test and post-test collections.

Findings

Our results strongly suggested that individual students differ greatly in the degree to which they report the capacity to lead when initially enrolling in their first class. Surprisingly, the various models were unable to predict a pattern of longitudinal leader development through repeated course enrollment in our sample.

Originality/value

Our investigation employed statistical methods that are not often utilized in leadership education quantitative research, and also included a data collection effort designed to avoid a linear pre-test/post-test score comparison.

Details

Journal of Leadership Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1552-9045

Keywords

Article
Publication date: 12 December 2023

Muzamil Ahmad Rafiqii, M.A. Lone and M.A. Tantray

This study aims to provide a review for scour in complex rivers and streams with coarser bed material, steep longitudinal bed slopes and dynamic environments, in the interest of…

Abstract

Purpose

This study aims to provide a review for scour in complex rivers and streams with coarser bed material, steep longitudinal bed slopes and dynamic environments, in the interest of the safety and the economy of hydraulic structures. The knowledge of scour in such geographical complexities is very crucial for a comprehensive understanding of scour failures and for establishing definitive criteria to bridge this major research gap.

Design/methodology/approach

The existing available literature shows significant work done in case of silt, sand and small sized coarser bed material but any substantial work for bed material of gravel size or above is lacking, resulting in a wide gap. Though some researchers have attempted to explore possibilities of refining the existing models by adding pier size, shape, sediment non-uniformity and armouring effects, which otherwise have been given a miss by the various researchers, including the pioneer in the field Lacey–Inglis (1930). But still, a rational model for scour estimation in such complex conditions for global use is yet to come. This is because all the parameters governing the scour have not been studied properly till date as is evident from the globally available literature and is witnessed in the field too, in recurrent failure of hydraulic structures especially bridges.

Findings

The researchers presume that the finer materials move only as a result of erosion. However, in actual field conditions, it has been observed that the large-sized stones also roll down and cause huge erosion along the river bed and damage the hydraulic structures, especially in the steep river/stream beds along hilly slopes. This fact has been overlooked in the models available globally and has been highlighted only in the current work in an attempt to recognize this major research gap. A study carried out on a number of streams globally and in Jammu and Kashmir, India also, has shown that in steep river and stream beds with bed material consisting of gravel size or greater than gravel, large scour holes ranging from 1 m to 5 m were created by furious floods, and due to other unknown forces along the channel path and near foundations of hydraulic structures.

Originality/value

To the best of the authors’ knowledge, this work is purely original.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 2000