Search results

1 – 10 of 36
Article
Publication date: 17 May 2022

Vinoth Kumar K., Loganathan T.G. and Jagadeesh G.

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Abstract

Purpose

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Design/methodology/approach

The design methodology of the proposed newer mechanical ABS comprises of two units, namely, the braking unit and wheel lock prevention unit. The braking unit actuates the wheel stopping as and when the driver applies the brake, whereas the wheel lock prevention unit initiates wheel release to prevent locking and subsequent slip/skidding. The brake pedal with master cylinder assembly and double-arm cylinder forms the braking unit, brake pad cylinder, movable brake pad, solenoid valve and dynamo forms the wheel lock prevention unit. The dynamo coupled with the rotor energises/de-energises the solenoid values to direct airflow for applying brake and release it, which makes the system less energy-dependent.

Findings

The braking unit aids in vehicle stops, by locking the disc with the brake pad actuated by a double-arm cylinder. The dynamo energises the solenoid valve to activate the brake pad cylinder piston for applying the brake on the disc. Instantaneously, on applying the brake the dynamo de-energises the solenoid to divert the pneumatic flow for retracting the brake pad thereby minimizing the braking torque. The baking torque reduction revives the wheel rotating and prevents slip/skidding.

Originality/value

Mechanical ABS preventing wheel lock by torque reduction principle is a novel method that has not been evolved so far. The system was designed with repair/replacement of the parts and subcomponents to support higher affordability on safety grounds.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

30

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 April 2024

Shuyuan Xu, Jun Wang, Xiangyu Wang, Wenchi Shou and Tuan Ngo

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s…

Abstract

Purpose

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s condition information (i.e. defects), improve the efficiency and accuracy of bridge inspections by supporting practitioners and even machines with digitalised expert knowledge, and ultimately automate the process.

Design/methodology/approach

The research design consists of three major phases so as to (1) categorise common defect with regard to physical entities (i.e. bridge element), (2) establish internal relationships among those defects and (3) relate defects to their properties and potential causes. A mixed-method research approach, which includes a comprehensive literature review, focus groups and case studies, was employed to develop and validate the proposed defect model.

Findings

The data collected through the literature and focus groups were analysed and knowledge were extracted to form the novel defect model. The defect model was then validated and further calibrated through case study. Inspection reports of nearly 300 bridges in China were collected and analysed. The study uncovered the relationships between defects and a variety of inspection-related elements and represented in the form of an accessible, digitalised and user-friendly knowledge model.

Originality/value

The contribution of this paper is the development of a defect model that can assist inexperienced practitioners and even machines in the near future to conduct inspection tasks. For one, the proposed defect model can standardise the data collection process of bridge inspection, including the identification of defects and documentation of their vital properties, paving the path for the automation in subsequent stages (e.g. condition evaluation). For another, by retrieving rich experience and expert knowledge which have long been reserved and inherited in the industrial sector, the inspection efficiency and accuracy can be considerably improved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 25 January 2024

Richard Byrne, Declan Patton, Zena Moore, Tom O’Connor, Linda Nugent and Pinar Avsar

This systematic review paper aims to investigate seasonal ambient change’s impact on the incidence of falls among older adults.

Abstract

Purpose

This systematic review paper aims to investigate seasonal ambient change’s impact on the incidence of falls among older adults.

Design/methodology/approach

The population, exposure, outcome (PEO) structured framework was used to frame the research question prior to using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis framework. Three databases were searched, and a total of 12 studies were found for inclusion, and quality appraisal was carried out. Data extraction was performed, and narrative analysis was carried out.

Findings

Of the 12 studies, 2 found no link between seasonality and fall incidence. One study found fall rates increased during warmer months, and 9 of the 12 studies found that winter months and their associated seasonal changes led to an increase in the incidence in falls. The overall result was that cooler temperatures typically seen during winter months carried an increased risk of falling for older adults.

Originality/value

Additional research is needed, most likely examining the climate one lives in. However, the findings are relevant and can be used to inform health-care providers and older adults of the increased risk of falling during the winter.

Details

Working with Older People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-3666

Keywords

Article
Publication date: 14 May 2024

In-Ju Kim

This study critically examines the safety aspects of ablution spaces in United Arab Emirates (UAE) mosques, emphasising the evaluation of smooth ceramic tile floorings prone to…

Abstract

Purpose

This study critically examines the safety aspects of ablution spaces in United Arab Emirates (UAE) mosques, emphasising the evaluation of smooth ceramic tile floorings prone to water accumulation. As an integral practice in Islamic worship, ablution spaces cater to a diverse demographic, making their safety a paramount concern. This study aims to meticulously assess slip-resistance properties and surface characteristics to provide practical recommendations for enhanced safety measures.

Design/methodology/approach

The investigation involves in situ measurements of traction properties and an extensive analysis of surface features in thirty mosques across the UAE. This comprehensive approach allows for identifying the unique challenges posed by ceramic tile floorings in ablution spaces. The study uses a portable tribometer for dynamic friction coefficient measurements, ensuring accurate slip-resistance evaluations. Surface texture analysis uses a portable profilometer to quantify roughness parameters.

Findings

The study’s findings significantly advance the comprehension of safety considerations in ablution spaces. Through empirical evidence and evidence-based insights, the research identifies immediate safety concerns and provides practical recommendations to create secure and inclusive environments within mosques. The emphasis lies on safeguarding the well-being of worshippers and contributing to the broader goal of safety in religious spaces.

Originality/value

The original contribution of this study lies in its dual focus on immediate safety concerns and the deeper understanding of unique safety challenges within ablution spaces. By offering evidence-based insights and practical recommendations, the research strives to make meaningful contributions to creating secure and inclusive environments within mosques.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 12 December 2023

Changliu Tian, Yabo Wu, Minghua Pang and Zhankui Wang

This study aims to clarify the influence mechanism of polishing solution type on the glazing evolution of fixed abrasive pad under different interfacial pressure conditions.

51

Abstract

Purpose

This study aims to clarify the influence mechanism of polishing solution type on the glazing evolution of fixed abrasive pad under different interfacial pressure conditions.

Design/methodology/approach

The tribological experiments were carried out on the friction and wear machinery with W3-5 diamond fixed abrasive pad and quartz glass workpiece under three polishing solution types of five pressure conditions. The changes of surface morphology, porosity and hardness of fixed abrasive pad were detected by white light interferometer, optical microscope and shore hardness tester.

Findings

The results showed that the glazed phenomenon of fixed abrasive pad is occurred after a certain time, which is more obvious with the increasing of interfacial pressures. The polishing solution type has a significant effect on the glazing time, although the glazed phenomenon is inevitable. The mechanism of it is that the micro-convex peaks on the surface of the fixed abrasive pad are easily wear, and the pores are blocked by the accumulation of waste debris generated during the experiment process. Thus, a smooth and high-density hard layer is formed on the surface of the fixed abrasive pad which induces the decreasing of the friction coefficient and surface roughness value. For selected polishing solution types, the wear rate of micro-convex peaks is different due to the corrosion action difference with polishing pad surface.

Originality/value

The main contribution of this work is to provide a new investigating method for further understanding the glazing evolution mechanism of fixed abrasive pad.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0257/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 January 2024

Atinuke Arinola Ajani and Daramola Thompson Olapade

The concept of aging-in-place has gained notable significance in the last decade due to a dramatic demographic shift in global population dynamics that have considerably affected…

Abstract

Purpose

The concept of aging-in-place has gained notable significance in the last decade due to a dramatic demographic shift in global population dynamics that have considerably affected the ability of societies to adequately cater for their aging population. This paper examines some of the barriers to aging-in-place in the context of health needs, housing design and the role of retrofitting/smart home technologies in overcoming these barriers.

Design/methodology/approach

Using a narrative literature review approach, the authors undertook a comprehensive search of recent relevant literature focusing on five core thematic areas: health and aging, aging in place, barriers to aging in place, retrofitting and smart home technologies for successful aging in place. The authors entered appropriate keywords into interdisciplinary research databases and synthesized a coherent narrative discussing the thematic areas using the data extracted from the literature search.

Findings

There is a bidirectional relationship between aging and the home environment. Barriers to aging-in-place are mainly related to progressive decline in health, which alters the environmental needs of individuals. Appropriate building designs can significantly facilitate aging-in-place. The authors, therefore, highlight the role of retrofitting and smart home technologies as practical solutions to the challenges of the aging-in-place.

Practical implications

Forward planning in building design is essential to guarantee that the home environment is well adapted for the challenges of aging-in-place while also promoting healthy aging.

Originality/value

The paper shows the relationship between aging and the home environment and how building design considerations could enhance healthy aging-in-place.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 November 2023

Muhammad Faisal, Iftikhar Ahmad and Abdur Rashid

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and…

Abstract

Purpose

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and entropy generation. Brick-shaped nanoparticles (zinc-oxide and ceria) are suspended in water, serving as the base-fluid to observe the performance of the hybrid mixture. The Maxwell thermal conductivity relation is employed to link the thermophysical attributes of the hybrid mixture with the host liquid. Additionally, a heat source/sink term is incorporated in the energy balance to enhance the impact of the investigation. Both prescribed-surface-temperature (PST) and prescribed-heat-flux (PHF) conditions are applied to inspect the thermal performance of the hybrid nanofluid.

Design/methodology/approach

The transport equations in Cartesian configuration are transformed into ordinary differential equations (ODEs), and an efficient method, namely the Keller-Box method (KBM), is utilized to solve the transformed system. Postprocessing is conducted to visually represent the velocity profile, thermal distribution, skin-friction coefficients, Bejan number, Nusselt number and entropy generation function against the variations of the involved parameters.

Findings

It is observed that more entropy is generated due to the increases in temperature difference and radiation parameters. The Bejan number initially declines but then improves with higher estimations of unsteadiness and Hartmann number. Overall, the thermal performance of the system is developed for the PST scenario than the PHF scenario for different estimations of the involved constraints.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the bidirectional flow of a CeO2-ZnO/water hybrid nanofluid with the combined effects of prescribed thermal aspects (PST and PHF) and entropy generation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 7 June 2023

Enoch Owusu-Sekyere, Helena Hansson, Evgenij Telezhenko, Ann-Kristin Nyman and Haseeb Ahmed

The purpose of this paper was to assess the economic impact of investment in different animal welfare–enhancing flooring solutions in Swedish dairy farming.

Abstract

Purpose

The purpose of this paper was to assess the economic impact of investment in different animal welfare–enhancing flooring solutions in Swedish dairy farming.

Design/methodology/approach

The authors developed a bio-economic model and used stochastic partial budgeting approach to simulate the economic consequences of enhancing solid and slatted concrete floors with soft rubber covering.

Findings

The findings highlight that keeping herds on solid and slatted concrete floor surfaces with soft rubber coverings is a profitable solution, compared with keeping herds on solid and slatted concrete floors without a soft covering. The profit per cow when kept on a solid concrete floor with soft rubber covering increased by 13%–16% depending on the breed.

Practical implications

Promoting farm investments such as improvement in flooring solution, which have both economic and animal welfare incentives, is a potential way of promoting sustainable dairy production. Farmers may make investments in improved floors, resulting in enhanced animal welfare and economic outcomes necessary for sustaining dairy production.

Originality/value

This literature review indicated that the economic impact of investment in specific types of floor improvement solutions, investment costs and financial outcomes have received little attention. This study provides insights needed for a more informed decision-making process when selecting optimal flooring solutions for new and renovated barns that improve both animal welfare and ease the burden on farmers and public financial support.

Details

British Food Journal, vol. 125 no. 12
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 10 of 36