Search results

1 – 2 of 2
Article
Publication date: 21 April 2023

Uyen Nguyen Tu Tran, Hung Ngoc Phan, Thao Thanh Hoang, Nu Thi Hong Le and Huong Mai Bui

The textile industry has consumed large quantities of water and discharged large volumes of wastewater in the dyeing process. The study aims to characterize self-dyed silk with…

Abstract

Purpose

The textile industry has consumed large quantities of water and discharged large volumes of wastewater in the dyeing process. The study aims to characterize self-dyed silk with Rhodamine B (RhB) for fashion applications to reduce textile hazards to the environment and increase the added value of silk.

Design/methodology/approach

Bombyx mori was fed with RhB-colored mulberry leaves (1500 ppm). The effects of self-dyeing were investigated via color strength K/S, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope, X-ray diffraction, tensile strength, color fastness to washing, rubbing, perspiration and light.

Findings

Self-dyed silk possesses effective coloration and impressive color fastness (4–5/5), higher crystalline index (CrI) (73.26 ± 2.28%), less thermal stability and tenacity, slight change in amino acid composition compared with the pristine and no existence of harmful aromatic azo amines and arylamine salts.

Practical implications

The application of self-dyed silk with RhB dye has expanded new technology into fashion industry, contributing partly to economic growth and adding value to silk in the global supply chain. Besides, the self-dyeing will yield practical values in the reduction of dyeing discharge in textile industry.

Originality/value

Self-dyed silk was characterized for textile applications in comparison with pristine silk in terms of color strength and fastness as well as determined its polymeric properties relating to crystallinity, morphology, chemical composition, tensile properties and thermal stability which have not been investigated before.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 January 2024

Hung Ngoc Phan and Satoko Okubayashi

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC…

Abstract

Purpose

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC modification method using glycerol and succinic acid with catalyst and heat, applied via an industrially scalable padding method to tackle BC’s stiffness drawbacks and enhance BC properties.

Design/methodology/approach

Fabric-like BC is generated via mechanical dehydration and then finished by using padding method with glycerol, succinic acid, catalyst and heat. Comprehensive material characterizations, including international testing standards for stiffness, bending properties (cantilever method), tensile properties, moisture vapor transmission rate, moisture content and regain, washing, thermal gravimetric analysis, derivative thermogravimetry, Fourier-transform infrared spectroscopy and colorimetric measurement, are used.

Findings

The combination of BC/glycerol/succinic acid dramatically enhanced porous structure, elongation (27.40 ± 6.39%), flexibility (flexural rigidity of 21.46 ± 4.01 µN m; bending modulus of 97.45 ± 18.20 MPa) and moisture management (moisture vapor transmission rate of 961.07 ± 86.16 g/m2/24 h; moisture content of 27.43 ± 2.50%; and moisture regain of 37.94 ± 4.73%). This softening process modified the thermal stability of BC. Besides, this study alleviated the drawbacks for washing (five cycles) of BC and glycerol caused by the ineffective affinity between glycerol and cellulose by adding succinic acid with catalyst and heat.

Originality/value

The study yields an effective padding process for BC softening and a unique modified BC to contribute added value to textile and leather industries as a sustainable alternative to existing materials and a premise for future research on BC functionalization by using doable technologies in mass production as padding.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 2 of 2