Search results

1 – 10 of over 1000
Article
Publication date: 17 September 2024

Mohammad Yaghtin and Youness Javid

The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup…

Abstract

Purpose

The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance. The primary goal is to minimize total tardiness, earliness and total completion times simultaneously. This study aims to provide effective solution methods, including a Mixed-Integer Programming (MIP) model, an Epsilon-constraint method and the Nondominated Sorting Genetic Algorithm (NSGA-II), to offer valuable insights into solving large-sized instances of this challenging problem.

Design/methodology/approach

This study addresses a multiobjective unrelated parallel machine scheduling problem with sequence-dependent setup times and periodic machine maintenance activities. An MIP model is introduced to formulate the problem, and an Epsilon-constraint method is applied for a solution. To handle the NP-hard nature of the problem for larger instances, an NSGA-II is developed. The research involves the creation of 45 problem instances for computational experiments, which evaluate the performance of the algorithms in terms of proposed measures.

Findings

The research findings demonstrate the effectiveness of the proposed solution approaches for the multiobjective unrelated parallel machine scheduling problem. Computational experiments on 45 generated problem instances reveal that the NSGA-II algorithm outperforms the Epsilon-constraint method, particularly for larger instances. The algorithms successfully minimize total tardiness, earliness and total completion times, showcasing their practical applicability and efficiency in handling real-world scheduling scenarios.

Originality/value

This study contributes original value by addressing a complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance activities. The introduction of an MIP model, the application of the Epsilon-constraint method and the development of the NSGA-II algorithm offer innovative approaches to solving this NP-hard problem. The research provides valuable insights into efficient scheduling methods applicable in various industries, enhancing decision-making processes and operational efficiency.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

537

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 12 January 2024

Patrik Jonsson, Johan Öhlin, Hafez Shurrab, Johan Bystedt, Azam Sheikh Muhammad and Vilhelm Verendel

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

1533

Abstract

Purpose

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Design/methodology/approach

A mixed-method case approach is applied. Explanatory variables are identified from the literature and explored in a qualitative analysis at an automotive original equipment manufacturer. Using logistic regression and random forest classification models, quantitative data (historical schedule transactions and internal data) enables the testing of the predictive difference of variables under various planning horizons and inaccuracy levels.

Findings

The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle is a significant variable with predictive differences that vary. Decoupling management is identified as a mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.

Practical implications

The findings provide guidelines for exploring and finding patterns in specific variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.

Originality/value

The findings contribute to explaining material delivery schedule variations, identifying potential root causes and moderators, empirically testing and validating effects and conceptualizing features that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 28 February 2023

Lin-Lin Xie, Yajiao Chen, Sisi Wu, Rui-Dong Chang and Yilong Han

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to…

Abstract

Purpose

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to focus on finding suitable algorithms to solve various scheduling problems and fail to find the potential scheduling rules in these optimal or near-optimal solutions, that is, the possible intrinsic relationships between attributes related to the scheduling of activity sequences. Data mining (DM) is used to analyze and interpret data to obtain valuable information stored in large-scale data. The goal of this paper is to use DM to discover scheduling concepts and obtain a set of rules that approximate effective solutions to resource-constrained project scheduling problems. These rules do not require any search and simulation, which have extremely low time complexity and support real-time decision-making to improve planning/scheduling.

Design/methodology/approach

The resource-constrained project scheduling problem can be described as scheduling a group of interrelated activities to optimize the project completion time and other objectives while satisfying the activity priority relationship and resource constraints. This paper proposes a new approach to solve the resource-constrained project scheduling problem by combining DM technology and the genetic algorithm (GA). More specifically, the GA is used to generate various optimal project scheduling schemes, after that C4.5 decision tree (DT) is adopted to obtain valuable knowledge from these schemes for further predicting and solving new scheduling problems.

Findings

In this study, the authors use GA and DM technology to analyze and extract knowledge from a large number of scheduling schemes, and determine the scheduling rule set to minimize the completion time. In order to verify the application effect of the proposed DT classification model, the J30, J60 and J120 datasets in PSPLIB are used to test the validity of the scheduling rules. The results show that DT can readily duplicate the excellent performance of GA for scheduling problems of different scales. In addition, the DT prediction model developed in this study is applied to a high-rise residential project consisting of 117 activities. The results show that compared with the completion time obtained by GA, the DT model can realize rapid adjustment of project scheduling problem to deal with the dynamic environment interference. In a word, the data-based approach is feasible, practical and effective. It not only captures the knowledge contained in the known optimal scheduling schemes, but also helps to provide a flexible scheduling decision-making approach for project implementation.

Originality/value

This paper proposes a novel knowledge-based project scheduling approach. In previous studies, intelligent optimization algorithm is often used to solve the project scheduling problem. However, although these intelligent optimization algorithms can generate a set of effective solutions for problem instances, they are unable to explain the process of decision-making, nor can they identify the characteristics of good scheduling decisions generated by the optimization process. Moreover, their calculation is slow and complex, which is not suitable for planning and scheduling complex projects. In this study, the set of effective solutions of problem instances is taken as the training dataset of DM algorithm, and the extracted scheduling rules can provide the prediction and solution of new scheduling problems. The proposed method focuses on identifying the key parameters of a specific dynamic scheduling environment, which can not only reproduces the scheduling performance of the original algorithm well, but also has the ability to make decisions quickly under the dynamic interference construction scenario. It is helpful for project managers to implement quick decisions in response to construction emergencies, which is of great practical significance for improving the flexibility and efficiency of construction projects.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 March 2023

Yiran Dan and Guiwen Liu

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs…

Abstract

Purpose

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs. However, there is still a lack of production and transportation scheduling methods that comprehensively consider delivery timeliness and transportation economy. This article aims to study the integrated scheduling optimization problem of in-plant flowshop production and off-plant transportation under the consideration of practical constraints of customer order delivery time window, and seek an optimal scheduling method that balances delivery timeliness and transportation economy.

Design/methodology/approach

In this study, an integrated scheduling optimization model of flowshop production and transportation for precast components with delivery time windows is established, which describes the relationship between production and transportation and handles transportation constraints under the premise of balancing delivery timeliness and transportation economy. Then a genetic algorithm is designed to solve this model. It realizes the integrated scheduling of production and transportation through double-layer chromosome coding. A program is designed to realize the solution process. Finally, the validity of the model is proved by the calculation of actual enterprise data.

Findings

The optimized scheduling scheme can not only meet the on-time delivery, but also improve the truck loading rate and reduce the total cost, composed of early cost in plant, delivery penalty cost and transportation cost. In the model validation, the optimal scheduling scheme uses one less truck than the traditional EDD scheme (saving 20% of the transportation cost), and the total cost can be saved by 17.22%.

Originality/value

This study clarifies the relationship between the production and transportation of precast components and establishes the integrated scheduling optimization model and its solution algorithm. Different from previous studies, the proposed optimization model can balance the timeliness and economy of production and transportation for precast components.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 August 2024

Nikhitha Adepu, Sharareh Kermanshachi, Apurva Pamidimukkala and Emily Nwakpuda

The effects of the COVID-19 outbreak on the construction industry were formidable and far-reaching, as the construction sector is a major contributor to the gross domestic product…

Abstract

Purpose

The effects of the COVID-19 outbreak on the construction industry were formidable and far-reaching, as the construction sector is a major contributor to the gross domestic product (GDP), which balances various sectors of the global economy, and to infrastructure growth, which is a primary gauge of a nation’s advancement. The outbreak led to workforce disruptions, worker deficits, dwindling efficiency, elongated project durations, and scarce opportunities for training and mentorship, and despite endeavors to mitigate these challenges, construction timelines experienced significant interruptions. Various researchers have pinpointed contributing elements, but few have constructed a predictive model to gauge the degree of impact.

Design/methodology/approach

Therefore, this research intends to fill by introducing an ordinal logistic regression method to forecast the impacts of a pandemic or other similar type of crisis. To achieve this, an online survey was developed and distributed to collect the perceptions of the construction engineers and managers about the diverse contributors to the exceeding project timelines during the COVID-19 pandemic outbreak.

Findings

Findings from this study indicate that financial liquidity, modifications to original plans, delays in securing governmental clearances, and a shortage of competent labor have medium-to-high levels of impact on project schedules.

Originality/value

This study will furnish decision-makers with crucial knowledge that will give them the tools to refine their strategies and judiciously allocate resources to overcome the unique hurdles encountered by various construction segments and will enhance the industry's capability to respond more effectively to challenges inherent in this type of crisis.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 2 July 2024

Mahesh Babu Purushothaman, Leo Neil Resurreccion San Pedro and Ali GhaffarianHoseini

This review paper aims to highlight the causes of delays (COD) and their interactions in construction projects, potentially aiding in timely completion and waste reduction through…

Abstract

Purpose

This review paper aims to highlight the causes of delays (COD) and their interactions in construction projects, potentially aiding in timely completion and waste reduction through early anticipation.

Design/methodology/approach

Forty-seven global literature were examined in detail to identify CODS and its interactions using the systematic literature review (SLR) method that utilised the PRISMA guidelines to ensure the studies reviewed were adequate to safeguard the robustness and comprehensiveness. Three-way analysis, such as Pareto, degree of centrality and loops, was undertaken to identify the critical Level 1,2 and 3 CODS that affect the Construction projects.

Findings

The research findings demonstrate that 65 CODs in eight categories affect construction projects. The CODs act in coherence rather than silos; the CLD displays complex interconnections of 44 factors obtained through the pairwise comparison of the 47 identified literature of the SLR. Through its systematic analysis of interaction loops, this research identified Ten level 1 critical CODs, two second-level critical CODs and 4 Third-level critical CODs. “Contractors' excessive workload/beyond potential/inadequate experience” emerged as the top COD that affects scheduling and project delay.

Research limitations/implications

The study limitations include using only English articles and a restricted number of databases. However, the chosen databases were reputable and underwent thorough peer review processes. This study may have limitations due to the SLR, which means that factors affecting COD and interactions may vary by country, and future research is suggested for validation.

Practical implications

This study identified interactions of construction delays that potentially support scheduling risk management during the early stage of the project and reduce waste to improve sustainability. The theoretical implications of SLR-based research include helping develop a framework that would potentially have all COD in the current scenario and aid future academic and industrial research factor-wise and country-wise in aiding sustainability. This will support and provide construction professionals and academia with knowledge of the COD related to factors and their interactions to be considered in the early assessment and management of future projects and improve sustainability.

Originality/value

Most literature studies the factors or causes of construction delays that affect construction projects. The CODs primarily do not operate in silos but combine with other causes to enhance their influence on delays. Hence, it is of utmost importance to study the interactions of COD to enhance the knowledge in the construction field that would aid in schedule repair and, in turn, on-time project delivery. The study is the first related to COD and their interactions in construction projects in the digital era.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 20 June 2024

Ryan Christopher Polk, Steve Buchheit, Mark E. Riley and Mary S. Stone

This study aims to examine the Securities and Exchange Commission’s final rule in Modernization of Beneficial Ownership Reporting, which reduced the time for significant public…

Abstract

Purpose

This study aims to examine the Securities and Exchange Commission’s final rule in Modernization of Beneficial Ownership Reporting, which reduced the time for significant public company shareholders to file Schedule 13D (effective February 5, 2024). The authors corroborate prior results under the historic 10-day maximum reporting regime and provide updated academic analysis regarding how the five-day deadline between the “triggering” event, accumulating 5% of the outstanding shares and public disclosure of that event will affect abnormal returns.

Design/methodology/approach

This empirical archival study uses publicly available data.

Findings

The analyses show that changing from a 10-day to a 5-day Schedule 13 disclosure window will reduce activist investors’ opportunity to profit by legally delaying the filing of Schedule 13D. These excess returns for delay exist regardless of the profitability or size of the target firm or the shareholder’s disclosed reason for filing. The authors conclude that accelerating the timing of the disclosure window is an improvement that is in the best interest of the general investing public.

Originality/value

To the authors’ knowledge, this is the only academic study of Schedule 13D filings to include the postpandemic period. As such, the authors establish an updated “baseline projection” for expectations regarding how the Modernization final rule will impact activist investors and stock returns under a five-day reporting regime. In addition, the authors measure and test abnormal returns after considering differences between “triggering” events and filing dates of Schedule 13Ds in the sample rather than grouping all filings. This approach allows the authors to account for the time difference between the triggering event and the filing date.

Details

Journal of Financial Regulation and Compliance, vol. 32 no. 4
Type: Research Article
ISSN: 1358-1988

Keywords

Article
Publication date: 27 August 2024

Haitao Liu, Junfu Zhou, Guangxi Li, Juliang Xiao and Xucang Zheng

This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.

Abstract

Purpose

This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.

Design/methodology/approach

The trajectory scheduling method includes two steps. First, a G3 continuity local smoothing approach is proposed to smooth the toolpath. Then, considering the tool/joint motion and geometric error constraints, a jerk-continuous feedrate scheduling method is proposed to generate the trajectory.

Findings

The simulations and experiments are conducted on the hybrid robot TriMule-800. The simulation results demonstrate that this method is effectively applicable to machining trajectory scheduling for various parts and is computationally friendly. Moreover, it improves the robot machining speed and ensures smooth operation under constraints. The results of the S-shaped part machining experiment show that the resulting surface profile error is below 0.12 mm specified in the ISO standard, confirming that the proposed method can ensure the machining accuracy of the hybrid robot.

Originality/value

This paper implements an analytical local toolpath smoothing approach to address the non-high-order continuity problem of the toolpath expressed in G code. Meanwhile, the feedrate scheduling method addresses the segmented paths after local smoothing, achieving smooth and continuous trajectory generation to balance machining accuracy and machining efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 June 2024

Pradipta Patra and Unni Krishnan Dinesh Kumar

Opportunistic and delayed maintenances are increasingly becoming important strategies for sustainable maintenance practices since they increase the lifetime of complex systems…

Abstract

Purpose

Opportunistic and delayed maintenances are increasingly becoming important strategies for sustainable maintenance practices since they increase the lifetime of complex systems like aircrafts and heavy equipment. The objective of the current study is to quantify the optimal time window for adopting these strategies.

Design/methodology/approach

The current study considers the trade-offs between different costs involved in the opportunistic and delayed maintenances (of equipment) like the fixed cost of scheduled maintenances, the opportunistic rewards that may be earned and the cost of premature parts replacement. The probability of the opportunistic maintenance has been quantified under two different scenarios – Mission Reliability and Renewal Process. In the case of delayed maintenance, the cost of the delayed maintenance is also considered. The study uses optimization techniques to find the optimal maintenance time windows and also derive useful insights.

Findings

Apart from finding the optimal time window for the maintenance activities the study also shows that opportunistic maintenance is beneficial provided the opportunistic reward is significantly large; the cost of conducting scheduled maintenance in the pre-determined slot is significantly large. Similarly, the opportunistic maintenance may not be beneficial if the pre-mature equipment parts replacement cost is significantly high. The optimal opportunistic maintenance time is increasing function of Weibull failure rate parameter “beta” and decreasing function of Weibull failure rate parameter “theta.” In the case of optimal delayed maintenance time, these relationships reverse.

Originality/value

To the best of our knowledge, very few studies exist that have used mission reliability to study opportunistic maintenance or considered the different cost trade-offs comprehensively.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 1000