Search results

1 – 2 of 2
Article
Publication date: 10 December 2018

Sunil Kumar Tiwari, Sarang Pande, Santosh M. Bobade and Santosh Kumar

The purpose of this paper is to propose and develop PA2200-based composite powder containing 0-15 Wt.% magnesium oxide before directly using it in selective laser sintering (SLS…

Abstract

Purpose

The purpose of this paper is to propose and develop PA2200-based composite powder containing 0-15 Wt.% magnesium oxide before directly using it in selective laser sintering (SLS) machine to produce end-use products for low-volume production in the engineering applications with keen focus to meet the functional requirements which rely on material properties.

Design/methodology/approach

The methodology reported emphasises PA2200-based composite powder containing 0-15 Wt.% magnesium oxide development for SLS process which starts with preparation and characterisation of composite material, thermal and rheological study of composite material to decide optimum process parameters for SLS process machine to get optimal part properties. Further, to verify composite material properties, a conventional casting methodology is used. The composition of composite materials those possessing good properties are further selected for processing in SLS process under optimal processing parameters.

Findings

The process parameters of SLS machine are material-dependent. The effect of temperature in X-ray diffraction profile is negligible in the case of magnesium oxide reinforced PA2200 composite material. The cyclic heating of material increases melting point temperature, this grounds to modify part bed temperature of material every time before processing on SLS machine to uphold build part properties, as well as material. With the rise in temperature, the Melt flow index and rheological property of materials change. The magnesium oxide reinforced PA2200 composite material has high thermal stability than pure PA2200 material. By the addition of small quantity of magnesium oxide, most of the mechanical property and flammability property improves while elongation at break (percentage) decreases significantly.

Practical implications

The proposed PA2200-based composite powder containing 0-15 Wt.% magnesium oxide material development system and casting metrology to verify developed material properties will be very useful to develop new composite material for SLS process with use of less material. The developed methodology has proven, especially in the case where non-experts or student need to develop composite material for SLS process according to the property requirement of applications.

Originality/value

Unlike earlier composite material development methodology, the projected methodology of polymer-based composite material and confirmation of material properties instead of commencing SLS process provides straight forward means for SLS process composite materials development with less use of the material and period of time.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2015

Sunil Kumar Tiwari, Sarang Pande, Sanat Agrawal and Santosh M. Bobade

The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the…

3937

Abstract

Purpose

The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements.

Design/methodology/approach

The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials.

Findings

Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts.

Originality/value

The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2