Search results

1 – 6 of 6
Article
Publication date: 13 February 2024

Wenqi Mao, Kexin Ran, Ting-Kwei Wang, Anyuan Yu, Hongyue Lv and Jieh-Haur Chen

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for…

Abstract

Purpose

Although extensive research has been conducted on precast production, irregular component loading constraints have received little attention, resulting in limitations for transportation cost optimization. Traditional irregular component loading methods are based on past performance, which frequently wastes vehicle space. Additionally, real-time road conditions, precast component assembly times, and delivery vehicle waiting times due to equipment constraints at the construction site affect transportation time and overall transportation costs. Therefore, this paper aims to provide an optimization model for Just-In-Time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time.

Design/methodology/approach

In order to propose a JIT (just-in-time) delivery optimization model, the effects of the sizes of irregular precast components, the assembly time, and the loading methods are considered in the 3D loading constraint model. In addition, for JIT delivery, incorporating real-time road conditions in the transportation process is essential to mitigate delays in the delivery of precast components. The 3D precast component loading problem is solved by using a hybrid genetic algorithm which mixes the genetic algorithm and the simulated annealing algorithm.

Findings

A real case study was used to validate the JIT delivery optimization model. The results indicated this study contributes to the optimization of strategies for loading irregular precast components and the reduction of transportation costs by 5.38%.

Originality/value

This study establishes a JIT delivery optimization model with the aim of reducing transportation costs by considering 3D loading constraints, real-time road conditions and assembly time. The irregular precast component is simplified into 3D bounding box and loaded with three-space division heuristic packing algorithm. In addition, the hybrid algorithm mixing the genetic algorithm and the simulated annealing algorithm is to solve the 3D container loading problem, which provides both global search capability and the ability to perform local searching. The JIT delivery optimization model can provide decision-makers with a more comprehensive and economical strategy for loading and transporting irregular precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 November 2022

Junlong Peng and Xiang-Jun Liu

This research is aimed to mainly be applicable to expediting engineering projects, uses the method of inverse optimization and the double-layer nested genetic algorithm combined…

Abstract

Purpose

This research is aimed to mainly be applicable to expediting engineering projects, uses the method of inverse optimization and the double-layer nested genetic algorithm combined with nonlinear programming algorithm, study how to schedule the number of labor in each process at the minimum cost to achieve an extremely short construction period goal.

Design/methodology/approach

The method of inverse optimization is mainly used in this study. In the first phase, establish a positive optimization model, according to the existing labor constraints, aiming at the shortest construction period. In the second phase, under the condition that the expected shortest construction period is known, on the basis of the positive optimization model, the inverse optimization method is used to establish the inverse optimization model aiming at the minimum change of the number of workers, and finally the optimal labor allocation scheme that meets the conditions is obtained. Finally, use algorithm to solve and prove with a case.

Findings

The case study shows that this method can effectively achieve the extremely short duration goal of the engineering project at the minimum cost, and provide the basis for the decision-making of the engineering project.

Originality/value

The contribution of this paper to the existing knowledge is to carry out a preliminary study on the relatively blank field of the current engineering project with a very short construction period, and provide a path for the vast number of engineering projects with strict requirements on the construction period to achieve a very short construction period, and apply the inverse optimization method to the engineering field. Furthermore, a double-nested genetic algorithm and nonlinear programming algorithm are designed. It can effectively solve various optimization problems.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 14 December 2023

Huijuan Zhou, Rui Wang, Dongyang Weng, Ruoyu Wang and Yaoqin Qiao

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making…

Abstract

Purpose

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making the train stranded in the interval between stations. This study aims to reduce the impact of interrupt events and improve service levels.

Design/methodology/approach

To address this issue, this paper considers the constraints of train operation safety, capacity and dynamic passenger flow demand. It proposes a method for adjusting small loops during interruption events and constructs a train operation adjustment model with the objective of minimizing the total passenger waiting time. This model enables the rapid development of train operation plans in interruption scenarios, coordinating train scheduling and line resources to minimize passenger travel time and mitigate the impact of interruptions. Regarding the proposed train operation adjustment model, an improved genetic algorithm (GA) is designed to solve it.

Findings

The model and algorithm are applied to a case study of interruption events on Beijing Subway Line 5. The results indicate that after solving the constructed model, the train departure intervals can be maintained between 1.5 min and 3 min. This ensures both the safety of train operations on the line and a good match with passengers’ travel demands, effectively reducing the total passenger waiting time and improving the service level of the urban rail transit system during interruptions. Compared to the GA algorithm, the algorithm proposed in this paper demonstrates faster convergence speed and better computational results.

Originality/value

This study explicitly outlines the adjustment method of using short-turn operation during operational interruptions, with train departure times and station stop times as decision variables. It takes into full consideration safety constraints on train operations, train capacity constraints and dynamic passenger demand. It has constructed a train schedule optimization model with the goal of minimizing the total waiting time for all passengers in the system.

Article
Publication date: 6 November 2023

Javad Behnamian and Z. Kiani

This paper aims to focus on a medical goods distribution problem and pharmacological waste collection by plug-in hybrid vehicles with some real-world restrictions. In this…

Abstract

Purpose

This paper aims to focus on a medical goods distribution problem and pharmacological waste collection by plug-in hybrid vehicles with some real-world restrictions. In this research, considering alternative energy sources and simultaneous pickup and delivery led to a decrease in greenhouse gas emissions and distribution costs, respectively.

Design/methodology/approach

Here, this problem has been modeled as mixed-integer linear programming with the traveling and energy consumption costs objective function. The GAMS was used for model-solving in small-size instances. Because the problem in this research is an NP-hard problem and solving real-size problems in a reasonable time is impossible, in this study, the artificial bee colony algorithm is used.

Findings

Then, the algorithm results are compared with a simulated annealing algorithm that recently was proposed in the literature. Finally, the results obtained from the exact solution and metaheuristic algorithms are compared, analyzed and reported. The results showed that the artificial bee colony algorithm has a good performance.

Originality/value

In this paper, medical goods distribution with pharmacological waste collection is studied. The paper was focused on plug-in hybrid vehicles with simultaneous pickup and delivery. The problem was modeled with environmental criteria. The traveling and energy consumption costs are considered as an objective function.

Details

Journal of Modelling in Management, vol. 19 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 9 April 2024

Derek L. Nazareth, Jae Choi and Thomas Ngo-Ye

This paper aims to examine the conditions under which small and medium enterprises (SMEs) invest in security services when they migrate their e-commerce applications to the cloud…

Abstract

Purpose

This paper aims to examine the conditions under which small and medium enterprises (SMEs) invest in security services when they migrate their e-commerce applications to the cloud environment. Using a risk management perspective, the paper assesses the impact of security service pricing, security incident prevalence and virulence to estimate SME security spending at the market level and draw out implications for SMEs and security service providers.

Design/methodology/approach

Security risks are inherently characterized by uncertainty. This study uses a Monte Carlo approach to understand the role of uncertainty in the decision to adopt security services. A model relating key security constructs is assembled based on key constructs from the domain. By manipulating security service costs and security incident types, the model estimates the market-level adoption of services, security incidents and damages incurred, along with measures of their relative dispersion.

Findings

Three key findings emerge from this study. First, adoption of services and protection is higher when tiered security services are provided, indicating that SMEs prefer to choose their security services rather than accept uniformly priced products. Second, SMEs are considered price-sensitive, resulting in a maximum level of spending in the market. Third, results indicate that security incidents and damages can be much higher than the mean in some cases, and this should serve as a cautionary note to SMEs.

Originality/value

Security spending has been modeled at the firm level. Adopting a market-level perspective represents a novel contribution. Additionally, the Monte Carlo approach provides managers with tangible measures of uncertainty, affording additional information and insight when making security service adoption decisions.

Details

Journal of Systems and Information Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1328-7265

Keywords

1 – 6 of 6