Search results

1 – 9 of 9
Open Access
Article
Publication date: 2 March 2023

Kartik Venkatraman, Stéphane Moreau, Julien Christophe and Christophe Schram

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating…

1660

Abstract

Purpose

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating conditions. This paper aims at understanding the flow physics around a model VAWT for three different tip speed ratios corresponding to three different flow regimes.

Design/methodology/approach

This study achieves a first three-dimensional hybrid lattice Boltzmann method/very large eddy simulation (LBM-VLES) model for a complete scaled model VAWT with end plates and mast using the solver PowerFLOW. The power curve predicted from the numerical simulations is compared with the experimental data collected at Erlangen University. This study highlights the complexity of the turbulent flow features that are seen at three different operational regimes of the turbine using instantaneous flow structures, mean velocity, pressure iso-contours, blade loading and skin friction plots.

Findings

The power curve predicted using the LBM-VLES approach and setup provides a good overall match with the experimental power curve, with the peak and drop after the operational point being captured. Variable turbulent flow structures are seen over the azimuthal revolution that depends on the tip speed ratio (TSR). Significant dynamic stall structures are seen in the upwind phase and at the end of the downwind phase of rotation in the deep stall regime. Strong blade wake interactions and turbulent flow structures are seen inside the rotor at higher TSRs.

Research limitations/implications

The computational cost and time for such high-fidelity simulations using the LBM-VLES remains expensive. Each simulation requires around a week using supercomputing facilities. Further studies need to be performed to improve analytical VAWT models using inputs/calibration from high fidelity simulation databases. As a future work, the impact of turbulent and nonuniform inflow conditions that are more representative of a typical urban environment also needs to be investigated.

Practical implications

The LBM methodology is shown to be a reliable approach for VAWT power prediction. Dynamic stall and blade wake interactions reduce the aerodynamic performance of a VAWT. An ideal operation close to the peak of the power curve should be favored based on the local wind resource, as this point exhibits a smoother variation of forces improving operational performance. The 3D flow features also exhibit a significant wake asymmetry that could impact the optimal layout of VAWT clusters to increase their power density. The present work also highlights the importance of 3D simulations of the complete model including the support structures such as end plates and mast.

Social implications

Accurate predictions of power performance for Darrieus VAWTs could help in better siting of wind turbines thus improving return of investment and reducing levelized cost of energy. It could promote the development of onsite electricity generation, especially for industrial sites/urban areas and renew interest for VAWT wind farms.

Originality/value

A first high-fidelity simulation of a complete VAWT with end plates and supporting structures has been performed using the LBM approach and compared with experimental data. The 3D flow physics has been analyzed at different operating regimes of the turbine. These physical insights and prediction capabilities of this approach could be useful for commercial VAWT manufacturers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 3 October 2019

Lin Qi, Wenbo Zhang, Ronglai Sun and Fang Liu

Giant orthogonal grid barrel vault is generated by deleting members in the inessential force transfer path of the two-layer lattice barrel vault. Consisting of members in the…

1605

Abstract

Purpose

Giant orthogonal grid barrel vault is generated by deleting members in the inessential force transfer path of the two-layer lattice barrel vault. Consisting of members in the essential transfer path only, giant orthogonal grid barrel vault is a new type of structure with clear mechanical behavior and efficient material utilization. The paper aims to discuss this issue.

Design/methodology/approach

The geometrical configuration of this structure is analyzed, and the geometrical modeling method is proposed. When necessary parameters are determined, such as the structural span, length, vault rise, longitudinal and lateral giant grid number and section height to top chord length ratio of the lattice member, the structure geometrical model can be generated.

Findings

Numerical models of giant orthogonal grid barrel vaults with different rise–span ratios are built using the member model that can simulate the pre-buckling and post-buckling behavior. So the possible member buckle-straighten process and the plastic hinge form–disappear process of the structure under strong earthquake can be simulated.

Originality/value

Seismic analysis results indicate that when the structure damages under strong earthquake there are a large number of buckling members and few endpoint plastic hinges in the structure. Dynamic damage of giant orthogonal grid barrel vault under strong earthquake is caused by buckling members that weaken the structural bearing capacity.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 29 May 2024

Lixia Sun, Yuanwu Cai, Di Cheng, Xiaoyi Hu and Chunyang Zhou

Under the high-speed operating conditions, the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed…

Abstract

Purpose

Under the high-speed operating conditions, the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition. In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction, it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.

Design/methodology/approach

The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper. As for the wheel-rail contact forces, which is a particular force element in vehicle multibody system, a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation. Based on the flexible wheelset modeling approach in this paper, two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established, two kinds of track excitations, namely normal measured track irregularities and short-wave irregularities are used, wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.

Findings

Under normal track irregularity excitations, the amplitudes of vertical, longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model, and the virtual penetration and equivalent contact patch are also slightly smaller. For the flexible wheelset model, the wheel rail longitudinal and lateral creepages will also decrease. The higher the vehicle speed, the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model. Under track short-wave irregularity excitations, the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset. However, unlike the excitation case of measured track irregularity, under short-wave excitations, for the speed within the range of 200 to 350 km/h, the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase. This is partly due to the contribution of wheelset’s elastic vibration under short-wave excitations. For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above, as well as high-frequency wheel-rail interaction analysis problems under various speed conditions, the flexible wheelset model will give results agrees better with the reality.

Originality/value

This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system. Furthermore, by comparative research, the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained, which is useful to the application scope of rigid and flexible wheelset models.

Details

Railway Sciences, vol. 3 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 25 October 2021

Junjie Lu

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

1084

Abstract

Purpose

This study aims to study the gas film stiffness of the spiral groove dry gas seal.

Design/methodology/approach

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals. First, a theoretical model of modified generalized Reynolds equation is derived with slipping effect of a micro gap for spiral groove gas seal. Second, the test technology examines micro-scale gas film vibration and stationary ring vibration to determine gas film stiffness by establishing a dynamic test system.

Findings

An optimum value of the spiral angle and groove depth for improved gas film stiffness is clearly seen: the spiral angle is 1.34 rad (76.8º) and the groove depth is 1 × 10–5 m. Moreover, it can be observed that optimal structural parameters can obtain higher gas film stiffness in the experiment. The average error between experiment and theory is less than 20%.

Originality/value

The present study represents the first attempt to calculate gas film stiffness in consideration of the slipping effect by using the new test technology for dry gas seals.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 17 June 2024

Xiaodong Sun, Yuanyuan Liu, Bettina Chocholaty and Steffen Marburg

Prior investigations concerning misalignment resulting from journal deformation typically relied on predefined misaligned angles. Nevertheless, scant attention has been devoted to…

245

Abstract

Purpose

Prior investigations concerning misalignment resulting from journal deformation typically relied on predefined misaligned angles. Nevertheless, scant attention has been devoted to the determination of these misaligned angles. Furthermore, existing studies commonly treat the journal as rigid under such circumstances. Therefore, the present study aims to introduce a framework for determining misaligned angles and to compare outcomes between rigid and flexible journal configurations.

Design/methodology/approach

The bearing forces are considered as an external load leading to journal deformation. This deformation is calculated using the finite element method. The pressure distribution producing the bearing force is solved using the finite difference method. The mesh grids in the finite element and finite difference methods are matched for coupling calculation. By iteration, the pressure distribution of the lubricant film at the equilibrium position is determined.

Findings

Results show that the deformation-induced misalignment has a significant influence on the performance of the bearing when the journal flexibility is taken into account. The parametric study reveals that the misalignment relies on system parameters such as bearing length-diameter ratio and static load.

Originality/value

The investigation of this work provides a quantification method of misalignment of hydrodynamic bearings considering the elastic deformation of the journal, which assists in the design of bearing in a rotor-bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0337/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 16 June 2021

Francisco Jesús Arjonilla García and Yuichi Kobayashi

This study aims to propose an offline exploratory method that consists of two stages: first, the authors focus on completing the kinematics model of the system by analyzing the…

Abstract

Purpose

This study aims to propose an offline exploratory method that consists of two stages: first, the authors focus on completing the kinematics model of the system by analyzing the Jacobians in the vicinity of the starting point and deducing a virtual input to effectively navigate the system along the non-holonomic constraint. Second, the authors explore the sensorimotor space in a predetermined pattern and obtain an approximate mapping from sensor space to chained form that facilitates controllability.

Design/methodology/approach

In this paper, the authors tackle the controller acquisition problem of unknown sensorimotor model in non-holonomic driftless systems. This feature is interesting to simplify and speed up the process of setting up industrial mobile robots with feedback controllers.

Findings

The authors validate the approach for the test case of the unicycle by controlling the system with time-state control policy. The authors present simulated and experimental results that show the effectiveness of the proposed method, and a comparison with the proximal policy optimization algorithm.

Originality/value

This research indicates clearly that feedback control of non-holonomic systems with uncertain kinematics and unknown sensor configuration is possible.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 14 September 2015

Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…

2562

Abstract

Purpose

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.

Design/methodology/approach

Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.

Findings

The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.

Originality/value

Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2225

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 6 December 2020

Benedetto Allotta, Lorenzo Fiorineschi, Susanna Papini, Luca Pugi, Federico Rotini and Andrea Rindi

This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to…

2993

Abstract

Purpose

This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to privilege a smooth behaviour efficiency, and the use of innovative production techniques. Results are quite surprising, as with a proper method it is possible to demonstrate that a cycloidal drive with Wolfrom topology should be an interesting solution for the proposed application.

Design/methodology/approach

With a functional approach, also considering materials and specifications related to the investigated application, it is possible to demonstrate that possible optimal solutions should be quite different respect to the ones that can be suggested with a conventional approach. In particular for proposed applications constraints related to encumbrances, the choice of new material has led to the innovative unconventional choice of a Wolfrom cycloidal speed reducer.

Findings

Provided solution is innovative respect current state of the art for machine currently used in construction yards: in terms of adopted transmission layout; in terms of chosen materials, resulting in an innovative solution.

Research limitations/implications

Current research has strong implications on the adoption of polimeric materials for the construction of reliable transmission for harsh industrial environment as the proposed case study (concrete mixer for construction yard).

Originality/value

Proposed transmission system is absolutely original and innovative respect current state of art also considering proposed materials and consequently production methods. This is an example of transmission designed to be built with polymeric materials by optimizing chosen topology respect to chosen material.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 9 of 9