Search results

1 – 8 of 8
Article
Publication date: 15 March 2024

Mohamed Slamani, Hocine Makri, Aissa Boudilmi, Ilian A. Bonev and Jean-Francois Chatelain

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use…

Abstract

Purpose

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use of the observability index and telescopic ballbar for accuracy enhancement.

Design/methodology/approach

The study uses the telescopic ballbar and an observability index for the calibration of an ABB IRB 120 robot, focusing on robotic orbital milling. Comparative simulation analysis selects the O3 index. Experimental tests, both static and dynamic, evaluate the proposed calibration approach within the robot’s workspace.

Findings

The proposed calibration approach significantly reduces circularity errors, particularly in robotic orbital milling, showcasing effectiveness in both static and dynamic modes at various tool center point speeds.

Research limitations/implications

The study focuses on a specific robot model and application (robotic orbital milling), limiting generalizability. Further research could explore diverse robot models and applications.

Practical implications

The findings offer practical benefits by enhancing the accuracy of robotic systems, particularly in precision tasks like orbital milling, providing a valuable calibration method.

Social implications

While primarily technological, improved robotic precision can have social implications, potentially influencing fields where robotic applications are crucial, such as manufacturing and automation.

Originality/value

This study’s distinctiveness lies in advancing the accuracy and precision of industrial robots during circular motions, specifically tailored for orbital milling applications. The innovative approach synergistically uses the observability index and telescopic ballbar to achieve these objectives.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 September 2024

Pengkun Cheng, Juliang Xiao, Wei Zhao, Yangyang Zhang, Haitao Liu and Xianlei Shan

This paper aims to enhance the machining accuracy of hybrid robots by treating the moving platform as the first joint of a serial robot for direct position measurement and…

Abstract

Purpose

This paper aims to enhance the machining accuracy of hybrid robots by treating the moving platform as the first joint of a serial robot for direct position measurement and integrating external grating sensors with motor encoders for real-time error compensation.

Design/methodology/approach

Initially, a spherical coordinate system is established using one linear and two circular grating sensors. This system enables direct acquisition of the moving platform’s position in the hybrid robot. Subsequently, during the coarse interpolation stage, the motor command for the next interpolation point is dynamically updated using error data from external grating sensors and motor encoders. Finally, fuzzy proportional integral derivative (PID) control is applied to maintain robot stability post-compensation.

Findings

Experiments were conducted on the TriMule-600 hybrid robot. The results indicate that the following errors of the five grating sensors are reduced by 94%, 93%, 80%, 75% and 88% respectively, after compensation. Using the fourth drive joint as an example, it was verified that fuzzy adaptive PID control performs better than traditional PID control.

Practical implications

The proposed online error compensation strategy significantly enhances the positional accuracy of the robot end, thereby improving the actual processing quality of the workpiece.

Social implications

This method presents a technique for achieving online error compensation in hybrid robots, which promotes the advancement of the manufacturing industry.

Originality/value

This paper proposes a cost-effective and practical method for online error compensation in hybrid robots using grating sensors, which contributes to the advancement of hybrid robot technology.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 April 2024

Jacqueline Humphries, Pepijn Van de Ven, Nehal Amer, Nitin Nandeshwar and Alan Ryan

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored…

47

Abstract

Purpose

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored using lasers. However, lasers cannot distinguish between human and non-human objects in the robot’s path. Stopping or slowing down the robot when non-human objects approach is unproductive. This research contribution addresses that inefficiency by showing how computer-vision techniques can be used instead of lasers which improve up-time of the robot.

Design/methodology/approach

A computer-vision safety system is presented. Image segmentation, 3D point clouds, face recognition, hand gesture recognition, speed and trajectory tracking and a digital twin are used. Using speed and separation, the robot’s speed is controlled based on the nearest location of humans accurate to their body shape. The computer-vision safety system is compared to a traditional laser measure. The system is evaluated in a controlled test, and in the field.

Findings

Computer-vision and lasers are shown to be equivalent by a measure of relationship and measure of agreement. R2 is given as 0.999983. The two methods are systematically producing similar results, as the bias is close to zero, at 0.060 mm. Using Bland–Altman analysis, 95% of the differences lie within the limits of maximum acceptable differences.

Originality/value

In this paper an original model for future computer-vision safety systems is described which is equivalent to existing laser systems, identifies and adapts to particular humans and reduces the need to slow and stop systems thereby improving efficiency. The implication is that computer-vision can be used to substitute lasers and permit adaptive robotic control in human–robot collaboration systems.

Details

Technological Sustainability, vol. 3 no. 3
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 11 June 2024

Zhihong Jiang, Jiachen Hu, Xiao Huang and Hui Li

Current reinforcement learning (RL) algorithms are facing issues such as low learning efficiency and poor generalization performance, which significantly limit their practical…

Abstract

Purpose

Current reinforcement learning (RL) algorithms are facing issues such as low learning efficiency and poor generalization performance, which significantly limit their practical application in real robots. This paper aims to adopt a hybrid model-based and model-free policy search method with multi-timescale value function tuning, aiming to allow robots to learn complex motion planning skills in multi-goal and multi-constraint environments with a few interactions.

Design/methodology/approach

A goal-conditioned model-based and model-free search method with multi-timescale value function tuning is proposed in this paper. First, the authors construct a multi-goal, multi-constrained policy optimization approach that fuses model-based policy optimization with goal-conditioned, model-free learning. Soft constraints on states and controls are applied to ensure fast and stable policy iteration. Second, an uncertainty-aware multi-timescale value function learning method is proposed, which constructs a multi-timescale value function network and adaptively chooses the value function planning timescales according to the value prediction uncertainty. It implicitly reduces the value representation complexity and improves the generalization performance of the policy.

Findings

The algorithm enables physical robots to learn generalized skills in real-world environments through a handful of trials. The simulation and experimental results show that the algorithm outperforms other relevant model-based and model-free RL algorithms.

Originality/value

This paper combines goal-conditioned RL and the model predictive path integral method into a unified model-based policy search framework, which improves the learning efficiency and policy optimality of motor skill learning in multi-goal and multi-constrained environments. An uncertainty-aware multi-timescale value function learning and selection method is proposed to overcome long horizon problems, improve optimal policy resolution and therefore enhance the generalization ability of goal-conditioned RL.

Details

Robotic Intelligence and Automation, vol. 44 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 July 2024

Peng Wu, Heng Su, Hao Dong, Tengfei Liu, Min Li and Zhihao Chen

Robotic arms play a crucial role in various industrial operations, such as sorting, assembly, handling and spraying. However, traditional robotic arm control algorithms often…

Abstract

Purpose

Robotic arms play a crucial role in various industrial operations, such as sorting, assembly, handling and spraying. However, traditional robotic arm control algorithms often struggle to adapt when faced with the challenge of dynamic obstacles. This paper aims to propose a dynamic obstacle avoidance method based on reinforcement learning to address real-time processing of dynamic obstacles.

Design/methodology/approach

This paper introduces an innovative method that introduces a feature extraction network that integrates gating mechanisms on the basis of traditional reinforcement learning algorithms. Additionally, an adaptive dynamic reward mechanism is designed to optimize the obstacle avoidance strategy.

Findings

Validation through the CoppeliaSim simulation environment and on-site testing has demonstrated the method's capability to effectively evade randomly moving obstacles, with a significant improvement in the convergence speed compared to traditional algorithms.

Originality/value

The proposed dynamic obstacle avoidance method based on Reinforcement Learning not only accomplishes the task of dynamic obstacle avoidance efficiently but also offers a distinct advantage in terms of convergence speed. This approach provides a novel solution to the obstacle avoidance methods for robotic arms.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 September 2023

Shreyanshu Parhi, Shashank Kumar, Kanchan Joshi, Milind Akarte, Rakesh D. Raut and Balkrishna Eknath Narkhede

The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence…

Abstract

Purpose

The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence, resulting in the emergence of novel capabilities. These capabilities have significantly reshaped the manufacturing ecosystem, enabling it to effectively navigate uncertainties. The purpose of this study is to assess the operational transformations resulting from the implementation of smart manufacturing, which distinguish it from conventional systems.

Design/methodology/approach

A list of qualitative and quantitative smart manufacturing performance metrics (SMPMs) are initially suggested and categorized into strategic, tactical and operational levels. The SMPMs resemble the capabilities of smart manufacturing systems to manage disruptions due to uncertainties. Then, industry and academia experts validate the SMPMs through the utilization of the Delphi method, enabling the ranking of the SMPMs.

Findings

The proposition of the SMPMs serves as a metric to assess the digital transformation capabilities of smart manufacturing systems. In addition, the ranking of the proposed SMPMs shows a degree of relevance of the measures in smart manufacturing deployment and managing the disruptions caused due to the COVID-19 pandemic

Research limitations/implications

The findings benefit managers, consultants, policymakers and researchers in making appropriate decisions for deploying and operationalizing smart manufacturing systems by focusing on critical SMPMs.

Originality/value

The research provides a metric to assess the operational transformations during the deployment of smart manufacturing systems. Also, it states the role of the metric in managing the potential disruptions that can alter the performance of the business due to the COVID-19 pandemic.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 3
Type: Research Article
ISSN: 2398-5364

Keywords

Content available
Book part
Publication date: 9 July 2024

Abstract

Details

The Role of Artificial Intelligence in Regenerative Tourism and Green Destinations
Type: Book
ISBN: 978-1-83753-746-4

Article
Publication date: 24 July 2024

Abdullah Owaimer Alsehaimi and Muizz O. Sanni-Anibire

The construction industry is witnessing a paradigm shift as a consequence of the fourth industrial revolution (IR 4.0). The implementation of IR4.0 technologies is, however…

Abstract

Purpose

The construction industry is witnessing a paradigm shift as a consequence of the fourth industrial revolution (IR 4.0). The implementation of IR4.0 technologies is, however, elementary in emerging economies such as Saudi Arabia. Therefore, the purpose of this paper is to carry out an examination of benefits, challenges and critical success factors for IR4.0 implementation in the construction industry in Saudi Arabia.

Design/methodology/approach

The methodology entailed a thorough review of the extant literature and consultation with experienced construction professionals in Saudi Arabia through questionnaire surveys. The data collected was further analyzed using the relative importance index approach and the confirmatory factor analysis.

Findings

The most important benefits, challenges and critical success factors established by this study include “Improved Communication and Coordination,” “Cost of implementation (initial investment and maintenance)” and “Clear goals and objectives,” respectively. Confirmatory factor analysis established a theoretical model to serve as a foundation for IR4.0 adoption in the Saudi construction industry.

Research limitations/implications

The limitations may be perceived in terms of the local context of the research, as well as the sample size. This prevents the potential for generalization of the study’s results.

Practical implications

It is of practical value to the Saudi construction industry in facilitating the successful implementation of technology through policies, frameworks and best practice guidance.

Originality/value

The study advances the theoretical knowledge of technology implementation in the construction industry. Emerging economies such as Saudi Arabia seeking to leverage the capabilities of digital technologies will find the results of this to be of crucial value.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 8 of 8